62 research outputs found

    Research Reports: 1997 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    For the 33rd consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama in Huntsville and MSFC during the period June 2, 1997 through August 8, 1997. Operated under the auspices of the American Society for Engineering Education, the MSFC program was sponsored by the Higher Education Branch, Education Division, NASA Headquarters, Washington, D.C. The basic objectives of the program, which are in the 34th year of operation nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. The Faculty Fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This document is a compilation of Fellows' reports on their research during the summer of 1997. The University of Alabama in Huntsville presents the Co-Directors' report on the administrative operations of the program. Further information can be obtained by contacting any of the editors

    The integration of CFD and VR methods to assist auxiliary ventilation practice

    Get PDF
    The current trend towards the adoption of retreat longwall mining methods and the associated rapid development of the access drivages has exacerbated the environmental conditions experienced within these workings. The combined use of roof bolt and continuous miner systems has improved the face advance rate within rapid development drivages. In order to maintain adequate dust and gas control it is essential that the auxiliary ventilation and monitoring systems are correctly installed and maintained. The causes of many potential environmental hazards experienced within auxiliary ventilated rapid development drivages, are often attributed to a failure by the workforce and supervisory officials to maintain the correct installation, maintenance and operational standards of the ventilation and mining systems. The potential ventilation hazards encountered may include: the failure to deliver the required fresh air quantity and velocity to rapidly dilute and disperse methane gas liberated in the vicinity of the cutting face, or the failure to maintain sufficient exhaust air quantity in the vicinity of the cut to adequately capture dust produced on cutting and loading of the extracted mineral. Results of recent research studies have demonstrated that validated Computational Fluid Dynamics (CFD) simulation models can adequately replicate examples of good and bad ventilation. CFD models may be constructed and solved to examine the relative ventilation benefits produced by alternative mining and auxiliary ventilation configurations. These models enable the practitioner to predict and visualise the velocity, pressure and contaminant fields within an auxiliary ventilated drivage. This research project has developed a prototype educational aid, which animates and visualises these airflow and pollutant dispersion patterns within a Virtual Reality (VR) model. By introducing a pollutant such as methane into the CFD models, the VR simulation highlights regions of potential methane concentration build-up to the trainee. The application also allows the user to select/investigate the environmental consequences of enacting a number of remedial actions

    Modelling the world in 3D : aspects of the acquisition, processing, management and analysis of spatial 3D data

    Get PDF

    An investigation into semi-automated 3D city modelling

    Get PDF
    Creating three dimensional digital representations of urban areas, also known as 3D city modelling, is essential in many applications, such as urban planning, radio frequency signal propagation, flight simulation and vehicle navigation, which are of increasing importance in modern society urban centres. The main aim of the thesis is the development of a semi-automated, innovative workflow for creating 3D city models using aerial photographs and LiDAR data collected from various airborne sensors. The complexity of this aim necessitates the development of an efficient and reliable way to progress from manually intensive operations to an increased level of automation. The proposed methodology exploits the combination of different datasets, also known as data fusion, to achieve reliable results in different study areas. Data fusion techniques are used to combine linear features, extracted from aerial photographs, with either LiDAR data or any other source available including Very Dense Digital Surface Models (VDDSMs). The research proposes a method which employs a semi automated technique for 3D city modelling by fusing LiDAR if available or VDDSMs with 3D linear features extracted from stereo pairs of photographs. The building detection and the generation of the building footprint is performed with the use of a plane fitting algorithm on the LiDAR or VDDSMs using conditions based on the slope of the roofs and the minimum size of the buildings. The initial building footprint is subsequently generalized using a simplification algorithm that enhances the orthogonality between the individual linear segments within a defined tolerance. The final refinement of the building outline is performed for each linear segment using the filtered stereo matched points with a least squares estimation. The digital reconstruction of the roof shapes is performed by implementing a least squares-plane fitting algorithm on the classified VDDSMs, which is restricted by the building outlines, the minimum size of the planes and the maximum height tolerance between adjacent 3D points. Subsequently neighbouring planes are merged using Boolean operations for generation of solid features. The results indicate very detailed building models. Various roof details such as dormers and chimneys are successfully reconstructed in most cases

    The development of GIS to aid conservation of architectural and archaeological sites using digital terrestrial photogrammetry

    Get PDF
    This thesis is concerned with the creation and implementation of an Architectural/Archaeological information System (A/AIS) by integrating digital terrestrial photogrammetry and CAD facilities as applicable to the requirements of architects, archaeologists and civil engineers. Architects and archaeologists are involved with the measurement, analysis and recording of the historical buildings and monuments. Hard-copy photogrammetric methods supporting such analyses and documentation are well established. But the requirement to interpret, classify and quantitatively process photographs can be time consuming. Also, they have limited application and cannot be re-examined if the information desired is not directly presented and a much more challenging extraction of 3-D coordinates than in a digital photogrammetric environment. The A/AIS has been developed to the point that it can provide a precise and reliable technique for non-contact 3-D measurements. The speed of on-line data acquisition, high degree of automation and adaptability has made this technique a powerful measurement tool with a great number of applications for architectural or archaeological sites. The designed tool (A/AIS) has been successful in producing the expected results in tasks examined for St. Avit Senieur Abbey in France, Strome Castle in Scotland, Gilbert Scott Building of Glasgow University, Hunter Memorial in Glasgow University and Anobanini Rock in Iran. The goals of this research were: to extract, using digital photogrammetric digitising, 3-D coordinates of architectural/archaeological features, to identify an appropriate 3-D model, to import 3-D points/lines into an appropriate 3-D modeller, to generate 3-D objects. to design and implement a prototype architectural Information System using the above 3-D model, to compare this approach to traditional approaches of measuring and archiving required information. An assessment of the contribution of digital photogrammetry, GIS and CAD to the surveying, conservation, recording and documentation of historical buildings and cultural monuments include digital rectification and restitution, feature extraction for the creation of 3-D digital models and the computer visualisation are the focus of this research

    Acoustic data optimisation for seabed mapping with visual and computational data mining

    Get PDF
    Oceans cover 70% of Earth’s surface but little is known about their waters. While the echosounders, often used for exploration of our oceans, have developed at a tremendous rate since the WWII, the methods used to analyse and interpret the data still remain the same. These methods are inefficient, time consuming, and often costly in dealing with the large data that modern echosounders produce. This PhD project will examine the complexity of the de facto seabed mapping technique by exploring and analysing acoustic data with a combination of data mining and visual analytic methods. First we test the redundancy issues in multibeam echosounder (MBES) data by using the component plane visualisation of a Self Organising Map (SOM). A total of 16 visual groups were identified among the 132 statistical data descriptors. The optimised MBES dataset had 35 attributes from 16 visual groups and represented a 73% reduction in data dimensionality. A combined Principal Component Analysis (PCA) + k-means was used to cluster both the datasets. The cluster results were visually compared as well as internally validated using four different internal validation methods. Next we tested two novel approaches in singlebeam echosounder (SBES) data processing and clustering – using visual exploration for outlier detection and direct clustering of time series echo returns. Visual exploration identified further outliers the automatic procedure was not able to find. The SBES data were then clustered directly. The internal validation indices suggested the optimal number of clusters to be three. This is consistent with the assumption that the SBES time series represented the subsurface classes of the seabed. Next the SBES data were joined with the corresponding MBES data based on identification of the closest locations between MBES and SBES. Two algorithms, PCA + k-means and fuzzy c-means were tested and results visualised. From visual comparison, the cluster boundary appeared to have better definitions when compared to the clustered MBES data only. The results seem to indicate that adding SBES did in fact improve the boundary definitions. Next the cluster results from the analysis chapters were validated against ground truth data using a confusion matrix and kappa coefficients. For MBES, the classes derived from optimised data yielded better accuracy compared to that of the original data. For SBES, direct clustering was able to provide a relatively reliable overview of the underlying classes in survey area. The combined MBES + SBES data provided by far the best accuracy for mapping with almost a 10% increase in overall accuracy compared to that of the original MBES data. The results proved to be promising in optimising the acoustic data and improving the quality of seabed mapping. Furthermore, these approaches have the potential of significant time and cost saving in the seabed mapping process. Finally some future directions are recommended for the findings of this research project with the consideration that this could contribute to further development of seabed mapping problems at mapping agencies worldwide
    • …
    corecore