21,547 research outputs found

    Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

    Full text link
    In this paper we propose an extension of the Rebeca language that can be used to model distributed and asynchronous systems with timing constraints. We provide the formal semantics of the language using Structural Operational Semantics, and show its expressiveness by means of examples. We developed a tool for automated translation from timed Rebeca to the Erlang language, which provides a first implementation of timed Rebeca. We can use the tool to set the parameters of timed Rebeca models, which represent the environment and component variables, and use McErlang to run multiple simulations for different settings. Timed Rebeca restricts the modeller to a pure asynchronous actor-based paradigm, where the structure of the model represents the service oriented architecture, while the computational model matches the network infrastructure. Simulation is shown to be an effective analysis support, specially where model checking faces almost immediate state explosion in an asynchronous setting.Comment: In Proceedings FOCLASA 2011, arXiv:1107.584

    Requirements for implementing real-time control functional modules on a hierarchical parallel pipelined system

    Get PDF
    Analysis of a robot control system leads to a broad range of processing requirements. One fundamental requirement of a robot control system is the necessity of a microcomputer system in order to provide sufficient processing capability.The use of multiple processors in a parallel architecture is beneficial for a number of reasons, including better cost performance, modular growth, increased reliability through replication, and flexibility for testing alternate control strategies via different partitioning. A survey of the progression from low level control synchronizing primitives to higher level communication tools is presented. The system communication and control mechanisms of existing robot control systems are compared to the hierarchical control model. The impact of this design methodology on the current robot control systems is explored

    OpenCL Actors - Adding Data Parallelism to Actor-based Programming with CAF

    Full text link
    The actor model of computation has been designed for a seamless support of concurrency and distribution. However, it remains unspecific about data parallel program flows, while available processing power of modern many core hardware such as graphics processing units (GPUs) or coprocessors increases the relevance of data parallelism for general-purpose computation. In this work, we introduce OpenCL-enabled actors to the C++ Actor Framework (CAF). This offers a high level interface for accessing any OpenCL device without leaving the actor paradigm. The new type of actor is integrated into the runtime environment of CAF and gives rise to transparent message passing in distributed systems on heterogeneous hardware. Following the actor logic in CAF, OpenCL kernels can be composed while encapsulated in C++ actors, hence operate in a multi-stage fashion on data resident at the GPU. Developers are thus enabled to build complex data parallel programs from primitives without leaving the actor paradigm, nor sacrificing performance. Our evaluations on commodity GPUs, an Nvidia TESLA, and an Intel PHI reveal the expected linear scaling behavior when offloading larger workloads. For sub-second duties, the efficiency of offloading was found to largely differ between devices. Moreover, our findings indicate a negligible overhead over programming with the native OpenCL API.Comment: 28 page

    Abstracting object interactions using composition filters

    Get PDF
    It is generally claimed that object-based models are very suitable for building distributed system architectures since object interactions follow the client-server model. To cope with the complexity of today's distributed systems, however, we think that high-level linguistic mechanisms are needed to effectively structure, abstract and reuse object interactions. For example, the conventional object-oriented model does not provide high-level language mechanisms to model layered system architectures. Moreover, we consider the message passing model of the conventional object-oriented model as being too low-level because it can only specify object interactions that involve two partner objects at a time and its semantics cannot be extended easily. This paper introduces Abstract Communication Types (ACTs), which are objects that abstract interactions among objects. ACTs make it easier to model layered communication architectures, to enforce the invariant behavior among objects, to reduce the complexity of programs by hiding the interaction details in separate modules and to improve reusability through the application of object-oriented principles to ACT classes. We illustrate the concept of ACTs using the composition filters model
    • …
    corecore