20,684 research outputs found

    A real-time demand response pricing model for the smart grid

    Get PDF
    Submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD)This thesis contributes to a novel model for Real-Time Price Suggestions (RTPS) of the Smart Grid (SG), which is the next generation modern bi-directional grid, particularly with respect to the pricing model. The research employs an experiment-based methodology which includes the use of a simulation technique. The research developed a Demand Response (DR) pricing model. Energy users are keen to reduce their bills, and Energy Providers (EP) is also keen on reducing their industrial costs. The DR model would benefit them both. The model has been tested with the UK-based traditional price value using real-time usage data. Energy users significantly reduced their bill and EP reduced their industrial cost due to load shifting. The Price Control Unit (PCU) and Price Suggestion Unit (PSU) utilise a set of embedded algorithms to vary price based upon demand. This model makes suggestions based on an energy threshold and makes use of Simultaneous Perturbation Stochastic Approximation Methods to produce prices. The results show that bill and peak load reductions benefit both the energy provider and users. The tests on a daily basis and monthly basis both benefit energy users and energy provider. The model has been validated by building a hardware prototype. This model also addresses users’ preferences; if users are non-responsive, they can still reduce their bills. The model contributes significantly to the existing models, and the novel contribution is the PSU which uniquely benefits energy users and provider. Therefore, there is a number of fundamental aspect of contributions to the model RTPS constitutes the final thesis of the PhD. The Real-Time Pricing is a better pricing system, algorithm developed on a daily basis and monthly basis and finally building a hardware prototype

    Distributed Stochastic Market Clearing with High-Penetration Wind Power

    Full text link
    Integrating renewable energy into the modern power grid requires risk-cognizant dispatch of resources to account for the stochastic availability of renewables. Toward this goal, day-ahead stochastic market clearing with high-penetration wind energy is pursued in this paper based on the DC optimal power flow (OPF). The objective is to minimize the social cost which consists of conventional generation costs, end-user disutility, as well as a risk measure of the system re-dispatching cost. Capitalizing on the conditional value-at-risk (CVaR), the novel model is able to mitigate the potentially high risk of the recourse actions to compensate wind forecast errors. The resulting convex optimization task is tackled via a distribution-free sample average based approximation to bypass the prohibitively complex high-dimensional integration. Furthermore, to cope with possibly large-scale dispatchable loads, a fast distributed solver is developed with guaranteed convergence using the alternating direction method of multipliers (ADMM). Numerical results tested on a modified benchmark system are reported to corroborate the merits of the novel framework and proposed approaches.Comment: To appear in IEEE Transactions on Power Systems; 12 pages and 9 figure

    Optimal provision of distributed reserves under dynamic energy service preferences

    Get PDF
    We propose and solve a stochastic dynamic programming (DP) problem addressing the optimal provision of regulation service reserves (RSR) by controlling dynamic demand preferences in smart buildings. A major contribution over past dynamic pricing work is that we pioneer the relaxation of static, uniformly distributed utility of demand. In this paper we model explicitly the dynamics of energy service preferences leading to a non-uniform and time varying probability distribution of demand utility. More explicitly, we model active and idle duty cycle appliances in a smart building as a closed queuing system with price-controlled arrival rates into the active appliance queue. Focusing on cooling appliances, we model the utility associated with the transition from idle to active as a non-uniform time varying function. We (i) derive an analytic characterization of the optimal policy and the differential cost function, and (ii) prove optimal policy monotonicity and value function convexity. These properties enable us to propose and implement a smart assisted value iteration (AVI) algorithm and an approximate DP (ADP) that exploits related functional approximations. Numerical results demonstrate the validity of the solution techniques and the computational advantage of the proposed ADP on realistic, large-state-space problems

    Government bond risk premia and the cyclicality of fiscal policy

    Get PDF
    We introduce a specification of habit formation featuring non-separability between consumption and leisure into an otherwise standard New Keynesian model. The model can be estimated with standard Bayesian techniques and the bond pricing implications are evaluated using higher-order approximations. The model is able to reproduce a sizeable risk premium on long-term bonds and the cyclicality of fiscal policy has an impact on the bond premium that is quantitatively important. Technology, government spending, and mark-up shocks are the main drivers of the time-variation in bond premia. JEL Classification: E5, E6, G1bond risk premium, DSGE Models, Fiscal Policy, monetary policy
    corecore