1,259 research outputs found

    A Feasibility Study on the Use of a Structured Light Depth-Camera for Three-Dimensional Body Measurements of Dairy Cows in Free-Stall Barns

    Get PDF
    Frequent checks on livestock\u2019s body growth can help reducing problems related to cow infertility or other welfare implications, and recognizing health\u2019s anomalies. In the last ten years, optical methods have been proposed to extract information on various parameters while avoiding direct contact with animals\u2019 body, generally causes stress. This research aims to evaluate a new monitoring system, which is suitable to frequently check calves and cow\u2019s growth through a three-dimensional analysis of their bodies\u2019 portions. The innovative system is based on multiple acquisitions from a low cost Structured Light Depth-Camera (Microsoft Kinect\u2122 v1). The metrological performance of the instrument is proved through an uncertainty analysis and a proper calibration procedure. The paper reports application of the depth camera for extraction of different body parameters. Expanded uncertainty ranging between 3 and 15 mm is reported in the case of ten repeated measurements. Coef\ufb01cients of determination R2> 0.84 and deviations lower than 6% from manual measurements where in general detected in the case of head size, hips distance, withers to tail length, chest girth, hips, and withers height. Conversely, lower performances where recognized in the case of animal depth (R2 = 0.74) and back slope (R2 = 0.12)

    Tractor cabin ergonomics analyses by means of Kinect motion capture technology

    Get PDF
    Kinect is the de facto standard for real-time depth sensing and motion capture cameras. The sensor is here proposed for exploiting body tracking during driving operations. The motion capture system was developed taking advantage of the Microsoft software development kit (SDK), and implemented for real-time monitoring of body movements of a beginner and an expert tractor drivers, on different tracks (straight and with curves) and with different driving conditions (manual and assisted steering). Tests show how analyses can be done not only in terms of absolute movements, but also in terms of relative shifts, allowing for quantification of angular displacements or rotations

    A comparative study of breast surface reconstruction for aesthetic outcome assessment

    Get PDF
    Breast cancer is the most prevalent cancer type in women, and while its survival rate is generally high the aesthetic outcome is an increasingly important factor when evaluating different treatment alternatives. 3D scanning and reconstruction techniques offer a flexible tool for building detailed and accurate 3D breast models that can be used both pre-operatively for surgical planning and post-operatively for aesthetic evaluation. This paper aims at comparing the accuracy of low-cost 3D scanning technologies with the significantly more expensive state-of-the-art 3D commercial scanners in the context of breast 3D reconstruction. We present results from 28 synthetic and clinical RGBD sequences, including 12 unique patients and an anthropomorphic phantom demonstrating the applicability of low-cost RGBD sensors to real clinical cases. Body deformation and homogeneous skin texture pose challenges to the studied reconstruction systems. Although these should be addressed appropriately if higher model quality is warranted, we observe that low-cost sensors are able to obtain valuable reconstructions comparable to the state-of-the-art within an error margin of 3 mm.Comment: This paper has been accepted to MICCAI201

    Evaluation of Pose Tracking Accuracy in the First and Second Generations of Microsoft Kinect

    Full text link
    Microsoft Kinect camera and its skeletal tracking capabilities have been embraced by many researchers and commercial developers in various applications of real-time human movement analysis. In this paper, we evaluate the accuracy of the human kinematic motion data in the first and second generation of the Kinect system, and compare the results with an optical motion capture system. We collected motion data in 12 exercises for 10 different subjects and from three different viewpoints. We report on the accuracy of the joint localization and bone length estimation of Kinect skeletons in comparison to the motion capture. We also analyze the distribution of the joint localization offsets by fitting a mixture of Gaussian and uniform distribution models to determine the outliers in the Kinect motion data. Our analysis shows that overall Kinect 2 has more robust and more accurate tracking of human pose as compared to Kinect 1.Comment: 10 pages, IEEE International Conference on Healthcare Informatics 2015 (ICHI 2015

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms

    Nonrigid reconstruction of 3D breast surfaces with a low-cost RGBD camera for surgical planning and aesthetic evaluation

    Get PDF
    Accounting for 26% of all new cancer cases worldwide, breast cancer remains the most common form of cancer in women. Although early breast cancer has a favourable long-term prognosis, roughly a third of patients suffer from a suboptimal aesthetic outcome despite breast conserving cancer treatment. Clinical-quality 3D modelling of the breast surface therefore assumes an increasingly important role in advancing treatment planning, prediction and evaluation of breast cosmesis. Yet, existing 3D torso scanners are expensive and either infrastructure-heavy or subject to motion artefacts. In this paper we employ a single consumer-grade RGBD camera with an ICP-based registration approach to jointly align all points from a sequence of depth images non-rigidly. Subtle body deformation due to postural sway and respiration is successfully mitigated leading to a higher geometric accuracy through regularised locally affine transformations. We present results from 6 clinical cases where our method compares well with the gold standard and outperforms a previous approach. We show that our method produces better reconstructions qualitatively by visual assessment and quantitatively by consistently obtaining lower landmark error scores and yielding more accurate breast volume estimates

    Development of Kinectᵀᴿ applications for assembly simulation and ergonomic analysis

    Get PDF
    Marker-less motion capture technology has been harnessed for several years to track human movements for developing various applications. Recently, with the launch of Microsoft Kinect, researchers have been keenly interested in developing applications using this device. Since Kinect is very inexpensive (only $110 at the time of writing this thesis), it is a low-cost and a promising substitute for the comparatively expensive marker-based motion capture systems. Though it is principally designed for home entertainment, numerous applications can be developed with the capabilities of Kinect. The skeleton data of a human being tracked by a single Kinect device is enough to simulate the human movements, in some cases. However, it is highly desirable to develop a multiple Kinect system to enhance the tracking volume and to address an issue of occlusions. This thesis presents a novel approach for addressing the issue of interference of infrared light patterns while using multiple Kinect devices for human motion capture without lowering the frame rate. This research also presents a software solution to obtain skeleton data from multiple Kinect devices using Kinect for Windows SDK. It also discusses the development of an application involving auto scaling of a human model in digital human modeling software by Siemens Jack and human motion simulation using skeleton tracking data from Kinect to assist the industries with a flexible tool for ergonomic analysis. Further, the capability of this application for obtaining assembly simulations of fastening operations on an aircraft fuselage is also presented. --Abstract, page iii
    • …
    corecore