3,334 research outputs found

    Forecasting Recharging Demand to Integrate Electric Vehicle Fleets in Smart Grids

    Get PDF
    Electric vehicle fleets and smart grids are two growing technologies. These technologies provided new possibilities to reduce pollution and increase energy efficiency. In this sense, electric vehicles are used as mobile loads in the power grid. A distributed charging prioritization methodology is proposed in this paper. The solution is based on the concept of virtual power plants and the usage of evolutionary computation algorithms. Additionally, the comparison of several evolutionary algorithms, genetic algorithm, genetic algorithm with evolution control, particle swarm optimization, and hybrid solution are shown in order to evaluate the proposed architecture. The proposed solution is presented to prevent the overload of the power grid

    On the Evaluation of Plug-in Electric Vehicle Data of a Campus Charging Network

    Get PDF
    The mass adoption of plug-in electric vehicles (PEVs) requires the deployment of public charging stations. Such facilities are expected to employ distributed generation and storage units to reduce the stress on the grid and boost sustainable transportation. While prior work has made considerable progress in deriving insights for understanding the adverse impacts of PEV chargings and how to alleviate them, a critical issue that affects the accuracy is the lack of real world PEV data. As the dynamics and pertinent design of such charging stations heavily depend on actual customer demand profile, in this paper we present and evaluate the data obtained from a 1717 node charging network equipped with Level 22 chargers at a major North American University campus. The data is recorded for 166166 weeks starting from late 20112011. The result indicates that the majority of the customers use charging lots to extend their driving ranges. Also, the demand profile shows that there is a tremendous opportunity to employ solar generation to fuel the vehicles as there is a correlation between the peak customer demand and solar irradiation. Also, we provided a more detailed data analysis and show how to use this information in designing future sustainable charging facilities.Comment: Accepted by IEEE Energycon 201

    Carbon Free Boston: Transportation Technical Report

    Get PDF
    Part of a series of reports that includes: Carbon Free Boston: Summary Report; Carbon Free Boston: Social Equity Report; Carbon Free Boston: Technical Summary; Carbon Free Boston: Buildings Technical Report; Carbon Free Boston: Waste Technical Report; Carbon Free Boston: Energy Technical Report; Carbon Free Boston: Offsets Technical ReportOVERVIEW: Transportation connects Boston’s workers, residents and tourists to their livelihoods, health care, education, recreation, culture, and other aspects of life quality. In cities, transit access is a critical factor determining upward mobility. Yet many urban transportation systems, including Boston’s, underserve some populations along one or more of those dimensions. Boston has the opportunity and means to expand mobility access to all residents, and at the same time reduce GHG emissions from transportation. This requires the transformation of the automobile-centric system that is fueled predominantly by gasoline and diesel fuel. The near elimination of fossil fuels—combined with more transit, walking, and biking—will curtail air pollution and crashes, and dramatically reduce the public health impact of transportation. The City embarks on this transition from a position of strength. Boston is consistently ranked as one of the most walkable and bikeable cities in the nation, and one in three commuters already take public transportation. There are three general strategies to reaching a carbon-neutral transportation system: • Shift trips out of automobiles to transit, biking, and walking;1 • Reduce automobile trips via land use planning that encourages denser development and affordable housing in transit-rich neighborhoods; • Shift most automobiles, trucks, buses, and trains to zero-GHG electricity. Even with Boston’s strong transit foundation, a carbon-neutral transportation system requires a wholesale change in Boston’s transportation culture. Success depends on the intelligent adoption of new technologies, influencing behavior with strong, equitable, and clearly articulated planning and investment, and effective collaboration with state and regional partners.Published versio

    Geographic features of zero-emissions urban mobility: the case of electric buses in Europe and Belarus

    Get PDF
    This article reviews the emerging phenomena of electric buses’ deployment in Europe and Belarus within the general framework of the concept of sustainable and electric urban mobility. The author offers a brief overview of electric bus technologies available on the market and a spatial analysis of fleet deployment in Europe. The analysis of the spatial structure of the distribution of e-buses in Europe indicated that, in terms of the number of vehicles in operation, the UK and the Netherlands are the regional leaders, while in terms of the number of cities testing e-buses – Germany, Sweden, and Poland are the leaders. The analysis showed that the main factors supporting the distribution of innovative technology and public support are legislative and regulative framework as well as clear strategic planning and cooperation between local administrations and transportation authorities. Other important aspects, such as network building features, and the location of the charging infrastructure were also discussed. The analysis of the case study of Minsk (the first city to introduce electric buses in Belarus) outlined the typical limiting factors for all types of markets: high battery costs and dependency on infrastructure; recommendations are given to emphasise bus fleet replacement (instead of trolleybus) and to develop a comprehensive sustainable urban mobility strategy

    Future “greener” urban transport: accessible, mobile and resilient cities?

    Get PDF
    Geographers, amongst others, have been considering urban futures for some time now. They all try to conceptually understand what a “sustainable city” in Europe / the UK / globally might look like. oncepts such as liveable, “green”, sustainable and resilient are being discussed, with carbon emissions and transitions, including from transport. Mobility (or what some authors call motility) is one strand, with lifecycle assessment of vehicles and fuels being applied . This article reviews visions and policies for more resilient urban transport

    Examining How Federal Infrastructure Policy Could Help Mitigate and Adapt to Climate Change: Hearing Before the H. Comm. on Transp. & Infrastructure, 116th Cong., Feb. 26, 2019 (Statement of Vicki Arroyo)

    Get PDF
    As the Fourth National Climate Assessment, released in November, describes, the United States is already experiencing serious impacts of climate change—and the risks to communities all across the country are growing rapidly. These findings, along with those in the 2018 Intergovernmental Panel on Climate Change (IPCC)report, are clear and should be a call to immediate action. Even if we manage to limit planetary warming to just 2 degrees C, the world will still face increased chances of economic and social upheaval from more severe flooding, droughts, heatwaves, and other climate impacts as well as devastating environmental consequences, the IPCC report warns. The scientific consensus as described in the IPCC Special Report is that countries around the world must rapidly decarbonize their economies, cutting greenhouse gas emissions in half by 2030 and to near zero by 2050. Yet the current trends are going in the wrong direction. Despite our increasing understanding of the narrowing window to act, U.S. GHG emissions increased by 3.4% in 2018, according to a January report from the Rhodium Group. Clearly more action is needed. The encouraging news is that many states and cities have committed to taking action. They are taking steps to reduce emissions through legislation, executive orders, and pledges made in collaborations such as the US Climate Alliance –now covering roughly half the US population and GDP. In my testimony, I will be focusing on the transportation sector, which is the largest contributor of GHG emissions in the United States, and is already facing significant impacts from climate change. Federal standards have been important in increasing efficiency and reducing emissions, yet transportation-sector emissions are increasing as more vehicle miles are driven, more freight is transported in trucks, and airline travel continues to grow. Transportation is becoming an increasingly large share of U.S. economy-wide emissions as the power sector decarbonizes as a result of market shifts and policy. There is an urgent need, therefore, to transition to a low-carbon transportation system. Such a transition would not only reduce emissions and fight climate change, it also would bring additional important benefits, including protecting public health by reducing conventional air pollution, providing more mobility options, and driving innovation and economic growth through policy action and through public and private investment
    corecore