955 research outputs found

    Military Innovation in the Third Age of U.S. Unmanned Aviation, 1991–2015

    Get PDF
    Military innovation studies have largely relied on monocausal accounts—rationalism, institutionalism, or culture—to explain technologically innovative and adaptive outcomes in defense organizations. None of these perspectives alone provided a compelling explanation for the adoption outcomes of unmanned aerial vehicles (UAVs) in the U.S. military from 1991 to 2015. Two questions motivated this research: Why, despite abundant material resources, mature technology, and operational need, are the most-capable UAVs not in the inventory across the services? What accounts for variations and patterns in UAV innovation adoption? The study selected ten UAV program episodes from the Air Force and Navy, categorized as high-, medium-, and low-end cases, for within-case and cross-case analysis. Primary and secondary sources, plus interviews, enabled process tracing across episodes. The results showed a pattern of adoption or rejection based on a logic-of-utility effectiveness and consistent resource availability: a military problem to solve, and a capability gap in threats or tasks and consistent monetary capacity; furthermore, ideational factors strengthened or weakened adoption. In conclusion, the study undermines single-perspective arguments as sole determinants of innovation, reveals that military culture is not monolithic in determining outcomes, and demonstrates that civil-military relationships no longer operate where civilian leaders hold inordinate sway over military institutions.Lieutenant Colonel, United States Air ForceApproved for public release; distribution is unlimited

    Military Transformation and the Defense Industry after Next

    Get PDF
    Though still adjusting to the end of the Cold War, the defense industry is now confronted with the prospect of military transformation. Since the terrorist attacks on 11 September 2001, many firms have seen business improve in response to the subsequent large increase in the defense budget. But in the longer run, the defense sector\u27s military customers intend to reinvent themselves for a future that may require the acquisition of unfamiliar weapons and support systems.https://digital-commons.usnwc.edu/usnwc-newport-papers/1016/thumbnail.jp

    A Collaborative Visual Localization Scheme for a Low-Cost Heterogeneous Robotic Team with Non-Overlapping Perspectives

    Get PDF
    This paper presents and evaluates a relative localization scheme for a heterogeneous team of low-cost mobile robots. An error-state, complementary Kalman Filter was developed to fuse analytically-derived uncertainty of stereoscopic pose measurements of an aerial robot, made by a ground robot, with the inertial/visual proprioceptive measurements of both robots. Results show that the sources of error, image quantization, asynchronous sensors, and a non-stationary bias, were sufficiently modeled to estimate the pose of the aerial robot. In both simulation and experiments, we demonstrate the proposed methodology with a heterogeneous robot team, consisting of a UAV and a UGV tasked with collaboratively localizing themselves while avoiding obstacles in an unknown environment. The team is able to identify a goal location and obstacles in the environment and plan a path for the UGV to the goal location. The results demonstrate localization accuracies of 2cm to 4cm, on average, while the robots operate at a distance from each-other between 1m and 4m

    ENABLING WARFARE AT THE SPEED OF LIGHT: A COMPARATIVE ANALYSIS OF MULTI-MISSION HIGH ENERGY LASER RADARS

    Get PDF
    This capstone report provides a cost effectiveness analysis of various radar systems capable of guiding the Multi-Mission High Energy Laser (MMHEL) from a Stryker platform. The Army's Rapid Capability and Critical Technologies Office (RCCTO) is developing the MMHEL to provide a Mobile Short-Range Air Defense (MSHORAD) capability to maneuver units. The MMHEL requires a radar to cue the fire control system for target engagement. Past efforts to employ high-energy lasers have relied on large, stationary radars for target acquisition. The reliance on such radars limits a unit's ability to maneuver and results in the laser being employed primarily from a defensive posture. To maximize maneuverability and enable the offensive employment of the MMHEL, the U.S. Army needs an on-platform radar that is compact and inexpensive enough to equip multiple Strykers within a Stryker Brigade Combat Team with the capability to engage targets from a mobile platform. The RCCTO is currently tasked with accelerating efforts to fill this need. The intent of this report is to assist the RCCTO in these efforts by generating a list of viable radar alternatives and conducting a cost effectiveness analysis to produce a recommendation of the most optimal solution. The results indicate that RADA's aCHR radar presents the best value in terms of cost and benefit to the warfighter.http://archive.org/details/enablingwarfarea1094564109Captain, United States ArmyCaptain, United States ArmyMajor, United States ArmyCaptain, United States ArmyCaptain, United States ArmyApproved for public release; distribution is unlimited
    • …
    corecore