12,969 research outputs found

    Damage Tolerant Active Contro l: Concept and State of the Art

    Get PDF
    Damage tolerant active control is a new research area relating to fault tolerant control design applied to mechanical structures. It encompasses several techniques already used to design controllers and to detect and to diagnose faults, as well to monitor structural integrity. Brief reviews of the common intersections of these areas are presented, with the purpose to clarify its relations and also to justify the new controller design paradigm. Some examples help to better understand the role of the new area

    Parameter estimation of large flexible aerospace structures with application to the control of the Maypole Deployable Reflector

    Get PDF
    Systems such as the Maypole deployable reflector have a distributed parameter nature. The flexible column and hoop structure and the circular antenna of 30-100 meter diameter which it supports are described by partial, rather than ordinary, differential equations. Progress completed in reduced order modelling andd controller design and digital parameter estimation and control is summarized. Topics covered include depolyment and on-orbit operation; quasi-static (steady state) operation; dynamic distributed parameter system; autoregressive moving average identification; frequency domain procedures; direct or implicit active control; adaptive observers; parameter estimation using a linear reinforcement learning factor; feedback control; and reduced order modeling for nonlinear systems

    Unstationnary control of a launcher using observer-based structures

    Get PDF
    This paper deals with the design of a gain-scheduled controller for the attitude control of a launcher during atmospheric flight. The design is characterized by classical requirements such as phase/gain margins and flexible mode attenuations as well as time-domain constraints on the response of angle of attack to a worstcase wind profile. Moreover, these requirements must be fulfilled over the full atmospheric flight envelope and must be robust against parametric uncertainties. In order to achieve this goal, we propose a method based on minimal observer-based realizations of arbitrary stabilizing compensators. An original technique to assign the closed-loop dynamics between the state-feedback dynamics and the state-estimation dynamics is presented for the H∞ compensators case. The structure is used to mix various specifications through the Cross Standard Form(CSF) and to perform a smooth gain scheduling interpolation through an Euler-Newton algorithm of continuation

    A decentralized linear quadratic control design method for flexible structures

    Get PDF
    A decentralized suboptimal linear quadratic control design procedure which combines substructural synthesis, model reduction, decentralized control design, subcontroller synthesis, and controller reduction is proposed for the design of reduced-order controllers for flexible structures. The procedure starts with a definition of the continuum structure to be controlled. An evaluation model of finite dimension is obtained by the finite element method. Then, the finite element model is decomposed into several substructures by using a natural decomposition called substructuring decomposition. Each substructure, at this point, still has too large a dimension and must be reduced to a size that is Riccati-solvable. Model reduction of each substructure can be performed by using any existing model reduction method, e.g., modal truncation, balanced reduction, Krylov model reduction, or mixed-mode method. Then, based on the reduced substructure model, a subcontroller is designed by an LQ optimal control method for each substructure independently. After all subcontrollers are designed, a controller synthesis method called substructural controller synthesis is employed to synthesize all subcontrollers into a global controller. The assembling scheme used is the same as that employed for the structure matrices. Finally, a controller reduction scheme, called the equivalent impulse response energy controller (EIREC) reduction algorithm, is used to reduce the global controller to a reasonable size for implementation. The EIREC reduced controller preserves the impulse response energy of the full-order controller and has the property of matching low-frequency moments and low-frequency power moments. An advantage of the substructural controller synthesis method is that it relieves the computational burden associated with dimensionality. Besides that, the SCS design scheme is also a highly adaptable controller synthesis method for structures with varying configuration, or varying mass and stiffness properties

    Eigenstructure Assignment Based Controllers Applied to Flexible Spacecraft

    Get PDF
    The objective of this paper is to evaluate the behaviour of a controller designed using a parametric Eigenstructure Assignment method and to evaluate its suitability for use in flexible spacecraft. The challenge of this objective lies in obtaining a suitable controller that is specifically designated to alleviate the deflections and vibrations suffered by external appendages in flexible spacecraft while performing attitude manoeuvres. One of the main problems in these vehicles is the mechanical cross-coupling that exists between the rigid and flexible parts of the spacecraft. Spacecraft with fine attitude pointing requirements need precise control of the mechanical coupling to avoid undesired attitude misalignment. In designing an attitude controller, it is necessary to consider the possible vibration of the solar panels and how it may influence the performance of the rest of the vehicle. The nonlinear mathematical model of a flexible spacecraft is considered a close approximation to the real system. During the process of controller evaluation, the design process has also been taken into account as a factor in assessing the robustness of the system

    Pade-Type Model Reduction of Second-Order and Higher-Order Linear Dynamical Systems

    Full text link
    A standard approach to reduced-order modeling of higher-order linear dynamical systems is to rewrite the system as an equivalent first-order system and then employ Krylov-subspace techniques for reduced-order modeling of first-order systems. While this approach results in reduced-order models that are characterized as Pade-type or even true Pade approximants of the system's transfer function, in general, these models do not preserve the form of the original higher-order system. In this paper, we present a new approach to reduced-order modeling of higher-order systems based on projections onto suitably partitioned Krylov basis matrices that are obtained by applying Krylov-subspace techniques to an equivalent first-order system. We show that the resulting reduced-order models preserve the form of the original higher-order system. While the resulting reduced-order models are no longer optimal in the Pade sense, we show that they still satisfy a Pade-type approximation property. We also introduce the notion of Hermitian higher-order linear dynamical systems, and we establish an enhanced Pade-type approximation property in the Hermitian case

    Application of Lanczos vectors to control design of flexible structures, part 2

    Get PDF
    This report covers the period of the grant from January 1991 until its expiration in June 1992. Together with an Interim Report (Ref. 9), it summarizes the research conducted under NASA Grant NAG9-357 on the topic 'Application of Lanczos Vectors to Control Design of Flexible Structures.' The research concerns various ways to obtain reduced-order mathematical models of complex structures for use in dynamics analysis and in the design of control systems for these structures. This report summarizes the research

    Disturbances monitoring from controller states

    Get PDF
    In this paper, it is proposed to implement a given controller using observer-based structures in order to estimate or to monitor some unmeasured plant states or external disturbances. Such a monitoring can be used to perform in-line or off-line analysis (supervising controller modes, capitalizing flight data to improve disturbance modelling, ...). This observer-based structure must involve a judicious onboard model selected to be representative of the physical phenomenon one want to monitor. This principle is applied to an aircraft longitudinal flight control law to monitor wind disturbances and to estimate the angle-of-attack
    • 

    corecore