4,965 research outputs found

    UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking

    Full text link
    In recent years, numerous effective multi-object tracking (MOT) methods are developed because of the wide range of applications. Existing performance evaluations of MOT methods usually separate the object tracking step from the object detection step by using the same fixed object detection results for comparisons. In this work, we perform a comprehensive quantitative study on the effects of object detection accuracy to the overall MOT performance, using the new large-scale University at Albany DETection and tRACking (UA-DETRAC) benchmark dataset. The UA-DETRAC benchmark dataset consists of 100 challenging video sequences captured from real-world traffic scenes (over 140,000 frames with rich annotations, including occlusion, weather, vehicle category, truncation, and vehicle bounding boxes) for object detection, object tracking and MOT system. We evaluate complete MOT systems constructed from combinations of state-of-the-art object detection and object tracking methods. Our analysis shows the complex effects of object detection accuracy on MOT system performance. Based on these observations, we propose new evaluation tools and metrics for MOT systems that consider both object detection and object tracking for comprehensive analysis.Comment: 18 pages, 11 figures, accepted by CVI

    Vision-based toddler tracking at home

    Get PDF
    This paper presents a vision-based toddler tracking system for detecting risk factors of a toddler's fall within the home environment. The risk factors have environmental and behavioral aspects and the research in this paper focuses on the behavioral aspects. Apart from common image processing tasks such as background subtraction, the vision-based toddler tracking involves human classification, acquisition of motion and position information, and handling of regional merges and splits. The human classification is based on dynamic motion vectors of the human body. The center of mass of each contour is detected and connected with the closest center of mass in the next frame to obtain position, speed, and directional information. This tracking system is further enhanced by dealing with regional merges and splits due to multiple object occlusions. In order to identify the merges and splits, two directional detections of closest region centers are conducted between every two successive frames. Merges and splits of a single object due to errors in the background subtraction are also handled. The tracking algorithms have been developed, implemented and tested

    Data association and occlusion handling for vision-based people tracking by mobile robots

    Get PDF
    This paper presents an approach for tracking multiple persons on a mobile robot with a combination of colour and thermal vision sensors, using several new techniques. First, an adaptive colour model is incorporated into the measurement model of the tracker. Second, a new approach for detecting occlusions is introduced, using a machine learning classifier for pairwise comparison of persons (classifying which one is in front of the other). Third, explicit occlusion handling is incorporated into the tracker. The paper presents a comprehensive, quantitative evaluation of the whole system and its different components using several real world data sets
    • …
    corecore