1,377 research outputs found

    MulViMotion: shape-aware 3D myocardial motion tracking from multi-view cardiac MRI

    Get PDF
    Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods

    Multidimensional embedded MEMS motion detectors for wearable mechanocardiography and 4D medical imaging

    Get PDF
    Background: Cardiovascular diseases are the number one cause of death. Of these deaths, almost 80% are due to coronary artery disease (CAD) and cerebrovascular disease. Multidimensional microelectromechanical systems (MEMS) sensors allow measuring the mechanical movement of the heart muscle offering an entirely new and innovative solution to evaluate cardiac rhythm and function. Recent advances in miniaturized motion sensors present an exciting opportunity to study novel device-driven and functional motion detection systems in the areas of both cardiac monitoring and biomedical imaging, for example, in computed tomography (CT) and positron emission tomography (PET). Methods: This Ph.D. work describes a new cardiac motion detection paradigm and measurement technology based on multimodal measuring tools — by tracking the heart’s kinetic activity using micro-sized MEMS sensors — and novel computational approaches — by deploying signal processing and machine learning techniques—for detecting cardiac pathological disorders. In particular, this study focuses on the capability of joint gyrocardiography (GCG) and seismocardiography (SCG) techniques that constitute the mechanocardiography (MCG) concept representing the mechanical characteristics of the cardiac precordial surface vibrations. Results: Experimental analyses showed that integrating multisource sensory data resulted in precise estimation of heart rate with an accuracy of 99% (healthy, n=29), detection of heart arrhythmia (n=435) with an accuracy of 95-97%, ischemic disease indication with approximately 75% accuracy (n=22), as well as significantly improved quality of four-dimensional (4D) cardiac PET images by eliminating motion related inaccuracies using MEMS dual gating approach. Tissue Doppler imaging (TDI) analysis of GCG (healthy, n=9) showed promising results for measuring the cardiac timing intervals and myocardial deformation changes. Conclusion: The findings of this study demonstrate clinical potential of MEMS motion sensors in cardiology that may facilitate in time diagnosis of cardiac abnormalities. Multidimensional MCG can effectively contribute to detecting atrial fibrillation (AFib), myocardial infarction (MI), and CAD. Additionally, MEMS motion sensing improves the reliability and quality of cardiac PET imaging.Moniulotteisten sulautettujen MEMS-liiketunnistimien käyttö sydänkardiografiassa sekä lääketieteellisessä 4D-kuvantamisessa Tausta: Sydän- ja verisuonitaudit ovat yleisin kuolinsyy. Näistä kuolemantapauksista lähes 80% johtuu sepelvaltimotaudista (CAD) ja aivoverenkierron häiriöistä. Moniulotteiset mikroelektromekaaniset järjestelmät (MEMS) mahdollistavat sydänlihaksen mekaanisen liikkeen mittaamisen, mikä puolestaan tarjoaa täysin uudenlaisen ja innovatiivisen ratkaisun sydämen rytmin ja toiminnan arvioimiseksi. Viimeaikaiset teknologiset edistysaskeleet mahdollistavat uusien pienikokoisten liiketunnistusjärjestelmien käyttämisen sydämen toiminnan tutkimuksessa sekä lääketieteellisen kuvantamisen, kuten esimerkiksi tietokonetomografian (CT) ja positroniemissiotomografian (PET), tarkkuuden parantamisessa. Menetelmät: Tämä väitöskirjatyö esittelee uuden sydämen kineettisen toiminnan mittaustekniikan, joka pohjautuu MEMS-anturien käyttöön. Uudet laskennalliset lähestymistavat, jotka perustuvat signaalinkäsittelyyn ja koneoppimiseen, mahdollistavat sydämen patologisten häiriöiden havaitsemisen MEMS-antureista saatavista signaaleista. Tässä tutkimuksessa keskitytään erityisesti mekanokardiografiaan (MCG), joihin kuuluvat gyrokardiografia (GCG) ja seismokardiografia (SCG). Näiden tekniikoiden avulla voidaan mitata kardiorespiratorisen järjestelmän mekaanisia ominaisuuksia. Tulokset: Kokeelliset analyysit osoittivat, että integroimalla usean sensorin dataa voidaan mitata syketiheyttä 99% (terveillä n=29) tarkkuudella, havaita sydämen rytmihäiriöt (n=435) 95-97%, tarkkuudella, sekä havaita iskeeminen sairaus noin 75% tarkkuudella (n=22). Lisäksi MEMS-kaksoistahdistuksen avulla voidaan parantaa sydämen 4D PET-kuvan laatua, kun liikeepätarkkuudet voidaan eliminoida paremmin. Doppler-kuvantamisessa (TDI, Tissue Doppler Imaging) GCG-analyysi (terveillä, n=9) osoitti lupaavia tuloksia sydänsykkeen ajoituksen ja intervallien sekä sydänlihasmuutosten mittaamisessa. Päätelmä: Tämän tutkimuksen tulokset osoittavat, että kardiologisilla MEMS-liikeantureilla on kliinistä potentiaalia sydämen toiminnallisten poikkeavuuksien diagnostisoinnissa. Moniuloitteinen MCG voi edistää eteisvärinän (AFib), sydäninfarktin (MI) ja CAD:n havaitsemista. Lisäksi MEMS-liiketunnistus parantaa sydämen PET-kuvantamisen luotettavuutta ja laatua

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    An optimisation-based iterative approach for speckle tracking echocardiography

    Get PDF
    Speckle tracking is the most prominent technique used to estimate the regional movement of the heart based on echocardiograms. In this study, we propose an optimised-based block matching algorithm to perform speckle tracking iteratively. The proposed technique was evaluated using a publicly available synthetic echocardiographic dataset with known ground-truth from several major vendors and for healthy/ischaemic cases. The results were compared with the results from the classic (standard) two-dimensional block matching. The proposed method presented an average displacement error of 0.57 pixels, while classic block matching provided an average error of 1.15 pixels. When estimating the segmental/regional longitudinal strain in healthy cases, the proposed method, with an average of 0.32 ± 0.53, outperformed the classic counterpart, with an average of 3.43 ± 2.84. A similar superior performance was observed in ischaemic cases. This method does not require any additional ad hoc filtering process. Therefore, it can potentially help to reduce the variability in the strain measurements caused by various post-processing techniques applied by different implementations of the speckle tracking

    A Multi-scale Learning of Data-driven and Anatomically Constrained Image Registration for Adult and Fetal Echo Images

    Full text link
    Temporal echo image registration is a basis for clinical quantifications such as cardiac motion estimation, myocardial strain assessments, and stroke volume quantifications. Deep learning image registration (DLIR) is consistently accurate, requires less computing effort, and has shown encouraging results in earlier applications. However, we propose that a greater focus on the warped moving image's anatomic plausibility and image quality can support robust DLIR performance. Further, past implementations have focused on adult echo, and there is an absence of DLIR implementations for fetal echo. We propose a framework combining three strategies for DLIR for both fetal and adult echo: (1) an anatomic shape-encoded loss to preserve physiological myocardial and left ventricular anatomical topologies in warped images; (2) a data-driven loss that is trained adversarially to preserve good image texture features in warped images; and (3) a multi-scale training scheme of a data-driven and anatomically constrained algorithm to improve accuracy. Our experiments show that the shape-encoded loss and the data-driven adversarial loss are strongly correlated to good anatomical topology and image textures, respectively. They improve different aspects of registration performance in a non-overlapping way, justifying their combination. We show that these strategies can provide excellent registration results in both adult and fetal echo using the publicly available CAMUS adult echo dataset and our private multi-demographic fetal echo dataset, despite fundamental distinctions between adult and fetal echo images. Our approach also outperforms traditional non-DL gold standard registration approaches, including Optical Flow and Elastix. Registration improvements could also be translated to more accurate and precise clinical quantification of cardiac ejection fraction, demonstrating a potential for translation

    Fast left ventricle tracking using localized anatomical affine optical flow

    Get PDF
    Fast left ventricle tracking using localized anatomical affine optical flowIn daily clinical cardiology practice, left ventricle (LV) global and regional function assessment is crucial for disease diagnosis, therapy selection, and patient follow-up. Currently, this is still a time-consuming task, spending valuable human resources. In this work, a novel fast methodology for automatic LV tracking is proposed based on localized anatomically constrained affine optical flow. This novel method can be combined to previously proposed segmentation frameworks or manually delineated surfaces at an initial frame to obtain fully delineated datasets and, thus, assess both global and regional myocardial function. Its feasibility and accuracy were investigated in 3 distinct public databases, namely in realistically simulated 3D ultrasound, clinical 3D echocardiography, and clinical cine cardiac magnetic resonance images. The method showed accurate tracking results in all databases, proving its applicability and accuracy for myocardial function assessment. Moreover, when combined to previous state-of-the-art segmentation frameworks, it outperformed previous tracking strategies in both 3D ultrasound and cardiac magnetic resonance data, automatically computing relevant cardiac indices with smaller biases and narrower limits of agreement compared to reference indices. Simultaneously, the proposed localized tracking method showed to be suitable for online processing, even for 3D motion assessment. Importantly, although here evaluated for LV tracking only, this novel methodology is applicable for tracking of other target structures with minimal adaptations.The authors acknowledge funding support from FCT - Fundacao para a Ciência e a Tecnologia, Portugal, and the European Social Found, European Union, through the Programa Operacional Capital Humano (POCH) in the scope of the PhD grants SFRH/BD/93443/2013 (S. Queiros) and SFRH/BD/95438/2013 (P. Morais), and by the project ’PersonalizedNOS (01-0145-FEDER-000013)’ co-funded by Programa Operacional Regional do Norte (Norte2020) through the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio
    • …
    corecore