17,285 research outputs found

    A best view selection in meetings through attention analysis using a multi-camera network

    Get PDF
    Human activity analysis is an essential task in ambient intelligence and computer vision. The main focus lies in the automatic analysis of ongoing activities from a multi-camera network. One possible application is meeting analysis which explores the dynamics in meetings using low-level data and inferring high-level activities. However, the detection of such activities is still very challenging due to the often corrupted or imprecise low-level data. In this paper, we present an approach to understand the dynamics in meetings using a multi-camera network, consisting of fixed ambient and portable close-up cameras. As a particular application we are aiming to find the most informative video stream, for example as a representative view for a remote participant. Our contribution is threefold: at first, we estimate the extrinsic parameters of the portable close-up cameras based on head positions. Secondly, we find common overlapping areas based on the consensus of people’s orientation. And thirdly, the most informative view for a remote participant is estimated using common overlapping areas. We evaluated our proposed approach and compared it to a motion estimation method. Experimental results show that we can reach an accuracy of 74% compared to manually selected views

    LiveCap: Real-time Human Performance Capture from Monocular Video

    Full text link
    We present the first real-time human performance capture approach that reconstructs dense, space-time coherent deforming geometry of entire humans in general everyday clothing from just a single RGB video. We propose a novel two-stage analysis-by-synthesis optimization whose formulation and implementation are designed for high performance. In the first stage, a skinned template model is jointly fitted to background subtracted input video, 2D and 3D skeleton joint positions found using a deep neural network, and a set of sparse facial landmark detections. In the second stage, dense non-rigid 3D deformations of skin and even loose apparel are captured based on a novel real-time capable algorithm for non-rigid tracking using dense photometric and silhouette constraints. Our novel energy formulation leverages automatically identified material regions on the template to model the differing non-rigid deformation behavior of skin and apparel. The two resulting non-linear optimization problems per-frame are solved with specially-tailored data-parallel Gauss-Newton solvers. In order to achieve real-time performance of over 25Hz, we design a pipelined parallel architecture using the CPU and two commodity GPUs. Our method is the first real-time monocular approach for full-body performance capture. Our method yields comparable accuracy with off-line performance capture techniques, while being orders of magnitude faster

    A framework for realistic 3D tele-immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite differ- ent from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experi- ence of talking in person. Several causes for these differences have been identified and we propose inspiring and innova- tive solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational expe- rience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic ex- periences to a multitude of users that for them will feel much more similar to having face to face meetings than the expe- rience offered by conventional teleconferencing systems
    corecore