122 research outputs found

    Can you tell a face from a HEVC bitstream?

    Full text link
    Image and video analytics are being increasingly used on a massive scale. Not only is the amount of data growing, but the complexity of the data processing pipelines is also increasing, thereby exacerbating the problem. It is becoming increasingly important to save computational resources wherever possible. We focus on one of the poster problems of visual analytics -- face detection -- and approach the issue of reducing the computation by asking: Is it possible to detect a face without full image reconstruction from the High Efficiency Video Coding (HEVC) bitstream? We demonstrate that this is indeed possible, with accuracy comparable to conventional face detection, by training a Convolutional Neural Network on the output of the HEVC entropy decoder

    Video Classification With CNNs: Using The Codec As A Spatio-Temporal Activity Sensor

    Get PDF
    We investigate video classification via a two-stream convolutional neural network (CNN) design that directly ingests information extracted from compressed video bitstreams. Our approach begins with the observation that all modern video codecs divide the input frames into macroblocks (MBs). We demonstrate that selective access to MB motion vector (MV) information within compressed video bitstreams can also provide for selective, motion-adaptive, MB pixel decoding (a.k.a., MB texture decoding). This in turn allows for the derivation of spatio-temporal video activity regions at extremely high speed in comparison to conventional full-frame decoding followed by optical flow estimation. In order to evaluate the accuracy of a video classification framework based on such activity data, we independently train two CNN architectures on MB texture and MV correspondences and then fuse their scores to derive the final classification of each test video. Evaluation on two standard datasets shows that the proposed approach is competitive to the best two-stream video classification approaches found in the literature. At the same time: (i) a CPU-based realization of our MV extraction is over 977 times faster than GPU-based optical flow methods; (ii) selective decoding is up to 12 times faster than full-frame decoding; (iii) our proposed spatial and temporal CNNs perform inference at 5 to 49 times lower cloud computing cost than the fastest methods from the literature.Comment: Accepted in IEEE Transactions on Circuits and Systems for Video Technology. Extension of ICIP 2017 conference pape

    Application of region-based video surveillance in smart cities using deep learning

    Get PDF
    Smart video surveillance helps to build more robust smart city environment. The varied angle cameras act as smart sensors and collect visual data from smart city environment and transmit it for further visual analysis. The transmitted visual data is required to be in high quality for efficient analysis which is a challenging task while transmitting videos on low capacity bandwidth communication channels. In latest smart surveillance cameras, high quality of video transmission is maintained through various video encoding techniques such as high efficiency video coding. However, these video coding techniques still provide limited capabilities and the demand of high-quality based encoding for salient regions such as pedestrians, vehicles, cyclist/motorcyclist and road in video surveillance systems is still not met. This work is a contribution towards building an efficient salient region-based surveillance framework for smart cities. The proposed framework integrates a deep learning-based video surveillance technique that extracts salient regions from a video frame without information loss, and then encodes it in reduced size. We have applied this approach in diverse case studies environments of smart city to test the applicability of the framework. The successful result in terms of bitrate 56.92%, peak signal to noise ratio 5.35 bd and SR based segmentation accuracy of 92% and 96% for two different benchmark datasets is the outcome of proposed work. Consequently, the generation of less computational region-based video data makes it adaptable to improve surveillance solution in Smart Cities
    • …
    corecore