27,683 research outputs found

    Real-Time Message Routing and Scheduling

    Get PDF
    Exchanging messages between nodes of a network (e.g., embedded computers) is a fundamental issue in real-time systems involving critical routing and scheduling decisions. In order for messages to meet their deadlines, one has to determine a suitable (short) origin-destination path for each message and resolve conflicts between messages whose paths share a communication link of the network. With this paper we contribute to the theoretic foundations of real-time systems. On the one hand, we provide efficient routing strategies yielding origin-destination paths of bounded dilation and congestion. In particular, we can give good a priori guarantees on the time required to send a given set of messages which, under certain reasonable conditions, implies that all messages can be scheduled to reach their destination on time. Finally, for message routing along a directed path (which is already NP-hard), we identify a natural class of instances for which a simple scheduling heuristic yields provably optimal solutions

    Scheduling of routing table calculation schemes in open shortest path first using artificial neural network

    Get PDF
    Internet topology changes due to events such as router or link goes up and down. Topology changes trigger routing protocol to undergo convergence process which eventually prepares new shortest routes needed for packet delivery. Real-time applications (e.g. VoIP) are increasingly being deployed in internet nowadays and require the routing protocols to have quick convergence times in the range of milliseconds. To speed-up its convergence time and better serve real-time applications, a new routing table calculation scheduling schemes for Interior Gateway Routing Protocol called Open Shortest Path First (OSPF) is proposed in this research. The proposed scheme optimizes the scheduling of OSPF routing table calculations using Artificial Neural Network technique called Generalized Regression Neural Network. The scheme determines the suitable hold time based on three parameters: LSA-inter arrival time, the number of important control message in queue, and the computing utilization of the routers. The GRNN scheme is tested using Scalable Simulation Framework (SSFNet version 2.0) network simulator. Two kind of network topology with several link down scenarios used to test GRNN scheme and existing scheme (fixed hold time scheme). Results shows that GRNN provide faster convergence time compared to the existing scheme

    A Switch Architecture for Real-Time Multimedia Communications

    Get PDF
    In this paper we present a switch that can be used to transfer multimedia type of trafJic. The switch provides a guaranteed throughput and a bounded latency. We focus on the design of a prototype Switching Element using the new technology opportunities being offered today. The architecture meets the multimedia requirements but still has a low complexity and needs a minimum amount of hardware. A main item of this paper will be the background of the architectural design decisions made. These include the interconnection topology, buffer organization, routing and scheduling. The implementation of the switching fabric with FPGAs, allows us to experiment with switching mode, routing strategy and scheduling policy in a multimedia environment. The witching elements are interconnected in a Kautz topology. Kautz graphs have interesting properties such as: a small diametec the degree is independent of the network size, the network is fault-tolerant and has a simple routing algorithm

    Virtual lines, a deadlock free and real-time routing mechanism for ATM networks

    Get PDF
    In this paper we present a routing mechanism and buffer allocation mechanism for an ATM switching fabric. Since the fabric will be used to transfer multimedia traffic it should provide a guaranteed throughput and a bounded latency. We focus on the design of a suitable routing mechanism that is capable to fulfil these requirements and is free of deadlocks. We will describe two basic concepts that can be used to implement deadlock free routing. Routing of messages is closely related to buffering. We have organized the buffers into parallel fifos, each representing a virtual line. In this way we not only have solved the problem of Head Of Line blocking, but we can also give real-time guarantees. We will show that for local high-speed networks it is more advantageous to have a proper flow control than to have large buffers. Although the virtual line concept can have a low buffer utilization, the transfer efficiency can be higher. The virtual lines concept allows adaptive routing. The total throughput of the network can be improved by using alternative routes. Adaptive routing is attractive in networks where alternative routes are not much longer than the initial route(s). The network of the switching fabric is built up from switching elements interconnected in a Kautz topology

    Virtual lines, a deadlock-free and real-time routing mechanism for ATM networks

    Get PDF
    In this paper, we present a routing mechanism and buffer allocation mechanism for an ATM switching fabric. Since the fabric will be used to transfer multimedia traffic, it should provide a guaranteed throughput and a bounded latency. We focus on the design of a suitable routing mechanism that is capable of fulfilling these requirements and is free of deadlocks. We will describe two basic concepts that can be used to implement deadlock-free routing. Routing of messages is closely related to buffering. We have organized the buffers into parallel FIFO's, each representing a virtual line. In this way, we not only have solved the problem of head of line blocking, but we can also give real-time guarantees. We will show that for local high-speed networks, it is more advantageous to have a proper flow control than to have large buffers. Although the virtual line concept can have a low buffer utilization, the transfer efficiency can be higher. The virtual line concept allows adaptive routing. The total throughput of the network can be improved by using alternative routes. Adaptive routing is attractive in networks where alternative routes are not much longer than the initial route(s). The network of the switching fabric is built up from switching elements interconnected in a Kautz topology
    • 

    corecore