190 research outputs found

    Real-Time Management of Multimodal Streaming Data for Monitoring of Epileptic Patients

    Get PDF
    This is the Accepted Manuscript version of the following article: I. Mporas, D. Triantafyllopoulos, V. Megalooikonomou, “Real-Time Management of Multimodal Streaming Data for Monitoring of Epileptic Patients”, Journal of Medical Systems, Vol. 40(45), December 2015. The final published versions is available at: https://link.springer.com/article/10.1007%2Fs10916-015-0403-3 © Springer Science+Business Media New York 2015.New generation of healthcare is represented by wearable health monitoring systems, which provide real-time monitoring of patient’s physiological parameters. It is expected that continuous ambulatory monitoring of vital signals will improve treatment of patients and enable proactive personal health management. In this paper, we present the implementation of a multimodal real-time system for epilepsy management. The proposed methodology is based on a data streaming architecture and efficient management of a big flow of physiological parameters. The performance of this architecture is examined for varying spatial resolution of the recorded data.Peer reviewedFinal Accepted Versio

    Biosignal and context monitoring: Distributed multimedia applications of body area networks in healthcare

    Get PDF
    We are investigating the use of Body Area Networks (BANs), wearable sensors and wireless communications for measuring, processing, transmission, interpretation and display of biosignals. The goal is to provide telemonitoring and teletreatment services for patients. The remote health professional can view a multimedia display which includes graphical and numerical representation of patients’ biosignals. Addition of feedback-control enables teletreatment services; teletreatment can be delivered to the patient via multiple modalities including tactile, text, auditory and visual. We describe the health BAN and a generic mobile health service platform and two context aware applications. The epilepsy application illustrates processing and interpretation of multi-source, multimedia BAN data. The chronic pain application illustrates multi-modal feedback and treatment, with patients able to view their own biosignals on their handheld device

    RADAR-base: Epilepsy Case Study

    Get PDF
    The traditional hospital set-up is not appropriate for long-term epilepsy seizure detection in naturalistic ambulatory settings. To explore the feasibility of seizure detection in such a setting, an in-hospital study was conducted to evaluate three wearable devices and a data collection platform for ambulatory seizure detection. The platform collects and processes data for study administrators, clinicians and data scientists, who use it to create models to detect seizures. For that purpose, all data collected from the wearable devices is additionally synchronized with the hospital EEG and video, with gold-standard seizure labels provided by trained clinicians. Data collected by wearable devices shows potential for seizure detection in out-of-hospital based and ambulatory settings

    Biosignal and context monitoring: Distributed multimedia applications of Body Area Networks in healthcare

    Full text link

    Novel Processing and Transmission Techniques Leveraging Edge Computing for Smart Health Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Non-invasive wearable sensing systems for continuous health monitoring and long-term behavior modeling

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2006.Includes bibliographical references (p. 212-228).Deploying new healthcare technologies for proactive health and elder care will become a major priority over the next decade, as medical care systems worldwide become strained by the aging populations. This thesis presents LiveNet, a distributed mobile system based on low-cost commodity hardware that can be deployed for a variety of healthcare applications. LiveNet embodies a flexible infrastructure platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification capabilities. Using LiveNet, we are able to continuously monitor a wide range of physiological signals together with the user's activity and context, to develop a personalized, data-rich health profile of a user over time. Most clinical sensing technologies that exist have focused on accuracy and reliability, at the expense of cost-effectiveness, burden on the patient, and portability. Future proactive health technologies, on the other hand, must be affordable, unobtrusive, and non-invasive if the general population is going to adopt them.(cont.) In this thesis, we focus on the potential of using features derived from minimally invasive physiological and contextual sensors such as motion, speech, heart rate, skin conductance, and temperature/heat flux that can be used in combination with mobile technology to create powerful context-aware systems that are transparent to the user. In many cases, these non-invasive sensing technologies can completely replace more invasive diagnostic sensing for applications in long-term monitoring, behavior and physiology trending, and real-time proactive feedback and alert systems. Non-invasive sensing technologies are particularly important in ambulatory and continuous monitoring applications, where more cumbersome sensing equipment that is typically found in medical and clinical research settings is not usable. The research in this thesis demonstrates that it is possible to use simple non-invasive physiological and contextual sensing using the LiveNet system to accurately classify a variety of physiological conditions. We demonstrate that non-invasive sensing can be correlated to a variety of important physiological and behavioral phenomenon, and thus can serve as substitutes to more invasive and unwieldy forms of medical monitoring devices while still providing a high level of diagnostic power.(cont.) From this foundation, the LiveNet system is deployed in a number of studies to quantify physiological and contextual state. First, a number of classifiers for important health and general contextual cues such as activity state and stress level are developed from basic non-invasive physiological sensing. We then demonstrate that the LiveNet system can be used to develop systems that can classify clinically significant physiological and pathological conditions and that are robust in the presence of noise, motion artifacts, and other adverse conditions found in real-world situations. This is highlighted in a cold exposure and core body temperature study in collaboration with the U.S. Army Research Institute of Environmental Medicine. In this study, we show that it is possible to develop real-time implementations of these classifiers for proactive health monitors that can provide instantaneous feedback relevant in soldier monitoring applications. This thesis also demonstrates that the LiveNet platform can be used for long-term continuous monitoring applications to study physiological trends that vary slowly with time.(cont.) In a clinical study with the Psychiatry Department at the Massachusetts General Hospital, the LiveNet platform is used to continuously monitor clinically depressed patients during their stays on an in-patient ward for treatment. We show that we can accurately correlate physiology and behavior to depression state, as well as to track changes in depression state over time through the course of treatment. This study demonstrates how long-term physiology and behavioral changes can be captured to objectively measure medical treatment and medication efficacy. In another long-term monitoring study, the LiveNet platform is used to collect data on people's everyday behavior as they go through daily life. By collecting long-term behavioral data, we demonstrate the possibility of modeling and predicting high-level behavior using simple physiologic and contextual information derived solely from ambulatory mobile sensing technology.by Michael Sung.Ph.D

    Optical imaging and spectroscopy for the study of the human brain: status report.

    Get PDF
    This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions

    Optical imaging and spectroscopy for the study of the human brain: status report

    Get PDF
    This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions
    corecore