474 research outputs found

    Generalized parallelization methodology for video coding

    Get PDF
    This paper describes a generalized parallelization methodology for mapping video coding algorithms onto a multiprocessing architecture, through systematic task decomposition, scheduling and performance analysis. It exploits data parallelism inherent in the coding process and performs task scheduling base on task data size and access locality with the aim to hide as much communication overhead as possible. Utilizing Petri-nets and task graphs for representation and analysis, the method enables parallel video frame capturing, buffering and encoding without extra communication overhead. The theoretical speedup analysis indicates that this method offers excellent communication hiding, resulting in system efficiency well above 90%. A H.261 video encoder has been implemented on a TMS320C80 system using this method, and its performance was measured. The theoretical and measured performances are similar in that the measured speedup of the H.261 is 3.67 and 3.76 on four PP for QCIF and 352×240 video, respectively. They correspond to frame rates of 30.7 frame per second (fps) and 9.25 fps, and system efficiency of 91.8% and 94% respectively. As it is, this method is particularly efficient for platforms with small number of parallel processors.published_or_final_versio

    On the design of multimedia architectures : proceedings of a one-day workshop, Eindhoven, December 18, 2003

    Get PDF

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 × 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip
    • 

    corecore