3,203 research outputs found

    Real-Time Illegal Parking Detection in Outdoor Environments Using 1-D Transformation

    Full text link

    Illumination invariant stationary object detection

    Get PDF
    A real-time system for the detection and tracking of moving objects that becomes stationary in a restricted zone. A new pixel classification method based on the segmentation history image is used to identify stationary objects in the scene. These objects are then tracked using a novel adaptive edge orientation-based tracking method. Experimental results have shown that the tracking technique gives more than a 95% detection success rate, even if objects are partially occluded. The tracking results, together with the historic edge maps, are analysed to remove objects that are no longer stationary or are falsely identified as foreground regions because of sudden changes in the illumination conditions. The technique has been tested on over 7 h of video recorded at different locations and time of day, both outdoors and indoors. The results obtained are compared with other available state-of-the-art methods

    Detection and recognition of illegally parked vehicles based on an adaptive gaussian mixture model and a seed fill algorithm.

    Get PDF
    In this paper, we present an algorithm for the detection of illegally parked vehicles based on a combination of some image processing algorithms. A digital camera is fixed in the illegal parking region to capture the video frames. An adaptive Gaussian mixture model (GMM) is used for background subtraction in a complex environment to identify the regions of moving objects in our test video. Stationary objects are detected by using the pixel-level features in time sequences. A stationary vehicle is detected by using the local features of the object, and thus, information about illegally parked vehicles is successfully obtained. An automatic alarm system can be utilized according to the different regulations of different illegal parking regions. The results of this study obtained using a test video sequence of a real-time traffic scene show that the proposed method is effective

    Analysis of Illegal Parking Behavior in Lisbon: Predicting and Analyzing Illegal Parking Incidents in Lisbon´s Top 10 Critical Streets

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceIllegal parking represents a costly and pervasive problem for most cities, as it not only leads to an increase in traffic congestion and the emission of air pollutants but also compromises pedestrian, biking, and driving safety. Moreover, it obstructs the flow of emergency vehicles, delivery services, and other essential functions, posing a significant risk to public safety and impeding the efficient operation of urban services. These detrimental effects ultimately diminish the cleanliness, security, and overall attractiveness of cities, impacting the well-being of both residents and visitors alike. Traditionally, decision-support systems utilized for addressing illegal parking have heavily relied on costly camera systems and complex video-processing algorithms to detect and monitor infractions in real time. However, the implementation of such systems is often challenging and expensive, particularly considering the diverse and dynamic road environment conditions. Alternatively, research studies focusing on spatiotemporal features for predicting parking infractions present a more efficient and cost-effective approach. This project focuses on the development of a machine learning model to accurately predict illegal parking incidents in the ten highly critical streets of Lisbon Municipality, taking into account the hour period and whether it is a weekend or holiday. A comprehensive evaluation of various machine learning algorithms was conducted, and the k-nearest neighbors (KNN) algorithm emerged as the top performing model. The KNN model exhibited robust predictive capabilities, effectively estimating the occurrence of illegal parking in the most critical streets, and together with the creation of an interactive and user-friendly dashboard, this project contributes valuable insights for urban planners, policymakers, and law enforcement agencies, empowering them to enhance public safety and security through informed decision-making

    Gradual color clustering elimination for outdoor image segmentation

    Get PDF
    One of the color reduction methods is color clustering, which has been applied for segmentation. Nonetheless, it has not been an appropriate method due to the automatically images change by luminance effects and color/texture variety. Hence, it can be done by improving the usual color clustering methods called customizing segmentation methods. This study focuses on customizing the color clustering methods for segmentation and object recognition in the outdoor images by utilizing a multi - phase procedure through a multi - resolution platform, based on self - organizing neural network, call ed gradual color Cluster Elimination (GCCE). The proposed method has been evaluated on outdoor images dataset namely BSDS and the results have been compared to PRI, NPR, and GCE statistical metrics of the latest segmentation methods which demonstrated that the proposed method has a satisfactory performance for the segmentation of the outdoor scenes

    The Urban Streetspace Book - 210 solutions to design, allocate, and regulate streetspace in cities

    Get PDF

    Smart city services over a global interoperable Internet-of-Things system: the smart parking case

    Get PDF
    This paper presents the implementation of a global smart parking use case that employs data streams coming from two different cities: Santander, in Spain, and Busan, in South Korea. In addition to the geographical distance, what is more important is that the platforms used in each of the cities for exposing their data are different. Santander's data is available through FIWARE-based interfaces while Busan's exposes oneM2M endpoints. The underlying Wise-IoT system used for the field trial, which is briefly described in this paper, addresses the challenge of fragmentation within IoT ecosystems by developing a novel framework to achieve global interoperability and mobility of IoT applications and devices. In this sense, the proof-of-concept implementation presented in this paper serves as a validator of Global IoT Services, enabling transparent user, and applications, roaming between the two cities involved in the pilot.This work has been supported by the European Union's H2020 Programme for research, technological development and demonstration within the project "Worldwide Interoperability for Semantics IoT" under grant agreement No 723156 and by the Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No.2016-0-00067, Wise-IoT

    Video analytics for security systems

    Get PDF
    This study has been conducted to develop robust event detection and object tracking algorithms that can be implemented in real time video surveillance applications. The aim of the research has been to produce an automated video surveillance system that is able to detect and report potential security risks with minimum human intervention. Since the algorithms are designed to be implemented in real-life scenarios, they must be able to cope with strong illumination changes and occlusions. The thesis is divided into two major sections. The first section deals with event detection and edge based tracking while the second section describes colour measurement methods developed to track objects in crowded environments. The event detection methods presented in the thesis mainly focus on detection and tracking of objects that become stationary in the scene. Objects such as baggage left in public places or vehicles parked illegally can cause a serious security threat. A new pixel based classification technique has been developed to detect objects of this type in cluttered scenes. Once detected, edge based object descriptors are obtained and stored as templates for tracking purposes. The consistency of these descriptors is examined using an adaptive edge orientation based technique. Objects are tracked and alarm events are generated if the objects are found to be stationary in the scene after a certain period of time. To evaluate the full capabilities of the pixel based classification and adaptive edge orientation based tracking methods, the model is tested using several hours of real-life video surveillance scenarios recorded at different locations and time of day from our own and publically available databases (i-LIDS, PETS, MIT, ViSOR). The performance results demonstrate that the combination of pixel based classification and adaptive edge orientation based tracking gave over 95% success rate. The results obtained also yield better detection and tracking results when compared with the other available state of the art methods. In the second part of the thesis, colour based techniques are used to track objects in crowded video sequences in circumstances of severe occlusion. A novel Adaptive Sample Count Particle Filter (ASCPF) technique is presented that improves the performance of the standard Sample Importance Resampling Particle Filter by up to 80% in terms of computational cost. An appropriate particle range is obtained for each object and the concept of adaptive samples is introduced to keep the computational cost down. The objective is to keep the number of particles to a minimum and only to increase them up to the maximum, as and when required. Variable standard deviation values for state vector elements have been exploited to cope with heavy occlusion. The technique has been tested on different video surveillance scenarios with variable object motion, strong occlusion and change in object scale. Experimental results show that the proposed method not only tracks the object with comparable accuracy to existing particle filter techniques but is up to five times faster. Tracking objects in a multi camera environment is discussed in the final part of the thesis. The ASCPF technique is deployed within a multi-camera environment to track objects across different camera views. Such environments can pose difficult challenges such as changes in object scale and colour features as the objects move from one camera view to another. Variable standard deviation values of the ASCPF have been utilized in order to cope with sudden colour and scale changes. As the object moves from one scene to another, the number of particles, together with the spread value, is increased to a maximum to reduce any effects of scale and colour change. Promising results are obtained when the ASCPF technique is tested on live feeds from four different camera views. It was found that not only did the ASCPF method result in the successful tracking of the moving object across different views but also maintained the real time frame rate due to its reduced computational cost thus indicating that the method is a potential practical solution for multi camera tracking applications
    corecore