126 research outputs found

    Natural User Interfaces for Human-Drone Multi-Modal Interaction

    Get PDF
    Personal drones are becoming part of every day life. To fully integrate them into society, it is crucial to design safe and intuitive ways to interact with these aerial systems. The recent advances on User-Centered Design (UCD) applied to Natural User Interfaces (NUIs) intend to make use of human innate features, such as speech, gestures and vision to interact with technology in the way humans would with one another. In this paper, a Graphical User Interface (GUI) and several NUI methods are studied and implemented, along with computer vision techniques, in a single software framework for aerial robotics called Aerostack which allows for intuitive and natural human-quadrotor interaction in indoor GPS-denied environments. These strategies include speech, body position, hand gesture and visual marker interactions used to directly command tasks to the drone. The NUIs presented are based on devices like the Leap Motion Controller, microphones and small size monocular on-board cameras which are unnoticeable to the user. Thanks to this UCD perspective, the users can choose the most intuitive and effective type of interaction for their application. Additionally, the strategies proposed allow for multi-modal interaction between multiple users and the drone by being able to integrate several of these interfaces in one single application as is shown in various real flight experiments performed with non-expert users

    Computer vision in target pursuit using a UAV

    Get PDF
    Research in target pursuit using Unmanned Aerial Vehicle (UAV) has gained attention in recent years, this is primarily due to decrease in cost and increase in demand of small UAVs in many sectors. In computer vision, target pursuit is a complex problem as it involves the solving of many sub-problems which are typically concerned with the detection, tracking and following of the object of interest. At present, the majority of related existing methods are developed using computer simulation with the assumption of ideal environmental factors, while the remaining few practical methods are mainly developed to track and follow simple objects that contain monochromatic colours with very little texture variances. Current research in this topic is lacking of practical vision based approaches. Thus the aim of this research is to fill the gap by developing a real-time algorithm capable of following a person continuously given only a photo input. As this research considers the whole procedure as an autonomous system, therefore the drone is activated automatically upon receiving a photo of a person through Wi-Fi. This means that the whole system can be triggered by simply emailing a single photo from any device anywhere. This is done by first implementing image fetching to automatically connect to WIFI, download the image and decode it. Then, human detection is performed to extract the template from the upper body of the person, the intended target is acquired using both human detection and template matching. Finally, target pursuit is achieved by tracking the template continuously while sending the motion commands to the drone. In the target pursuit system, the detection is mainly accomplished using a proposed human detection method that is capable of detecting, extracting and segmenting the human body figure robustly from the background without prior training. This involves detecting face, head and shoulder separately, mainly using gradient maps. While the tracking is mainly accomplished using a proposed generic and non-learning template matching method, this involves combining intensity template matching with colour histogram model and employing a three-tier system for template management. A flight controller is also developed, it supports three types of controls: keyboard, mouse and text messages. Furthermore, the drone is programmed with three different modes: standby, sentry and search. To improve the detection and tracking of colour objects, this research has also proposed several colour related methods. One of them is a colour model for colour detection which consists of three colour components: hue, purity and brightness. Hue represents the colour angle, purity represents the colourfulness and brightness represents intensity. It can be represented in three different geometric shapes: sphere, hemisphere and cylinder, each of these shapes also contains two variations. Experimental results have shown that the target pursuit algorithm is capable of identifying and following the target person robustly given only a photo input. This can be evidenced by the live tracking and mapping of the intended targets with different clothing in both indoor and outdoor environments. Additionally, the various methods developed in this research could enhance the performance of practical vision based applications especially in detecting and tracking of objects

    Control of a drone with body gestures

    Get PDF
    Drones are becoming more popular within military applications and civil aviation by hobbyists and business. Achieving a natural Human-Drone Interaction (HDI) would enable unskilled drone pilots to take part in the flying of these devices and more generally easy the use of drones. The research within this paper focuses on the design and development of a Natural User Interface (NUI) allowing a user to pilot a drone with body gestures. A Microsoft Kinect was used to capture the user's body information which was processed by a motion recognition algorithm and converted into commands for the drone. The implementation of a Graphical User Interface (GUI) gives feedback to the user. Visual feedback from the drone's onboard camera is provided on a screen and an interactive menu controlled by body gestures and allowing the choice of functionalities such as photo and video capture or take-off and landing has been implemented. This research resulted in an efficient and functional system, more instinctive, natural, immersive and fun than piloting using a physical controller, including innovative aspects such as the implementation of additional functionalities to the drone's piloting and control of the flight speed
    • …
    corecore