67 research outputs found

    Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook

    Get PDF
    Since the emergence of soft robotics around two decades ago, research interest in the field has escalated at a pace. It is fuelled by the industry's appreciation of the wide range of soft materials available that can be used to create highly dexterous robots with adaptability characteristics far beyond that which can be achieved with rigid component devices. The ability, inherent in soft robots, to compliantly adapt to the environment, has significantly sparked interest from the surgical robotics community. This article provides an in-depth overview of recent progress and outlines the remaining challenges in the development of soft robotics for minimally invasive surgery

    25th International Congress of the European Association for Endoscopic Surgery (EAES) Frankfurt, Germany, 14-17 June 2017 : Oral Presentations

    Get PDF
    Introduction: Ouyang has recently proposed hiatal surface area (HSA) calculation by multiplanar multislice computer tomography (MDCT) scan as a useful tool for planning treatment of hiatus defects with hiatal hernia (HH), with or without gastroesophageal reflux (MRGE). Preoperative upper endoscopy or barium swallow cannot predict the HSA and pillars conditions. Aim to asses the efficacy of MDCT’s calculation of HSA for planning the best approach for the hiatal defects treatment. Methods: We retrospectively analyzed 25 patients, candidates to laparoscopic antireflux surgery as primary surgery or hiatus repair concomitant with or after bariatric surgery. Patients were analyzed preoperatively and after one-year follow-up by MDCT scan measurement of esophageal hiatus surface. Five normal patients were enrolled as control group. The HSA’s intraoperative calculation was performed after complete dissection of the area considered a triangle. Postoperative CT-scan was done after 12 months or any time reflux symptoms appeared. Results: (1) Mean HSA in control patients with no HH, no MRGE was cm2 and similar in non-complicated patients with previous LSG and cruroplasty. (2) Mean HSA in patients candidates to cruroplasty was 7.40 cm2. (3) Mean HSA in patients candidates to redo cruroplasty for recurrence was 10.11 cm2. Discussion. MDCT scan offer the possibility to obtain an objective measurement of the HSA and the correlation with endoscopic findings and symptoms. The preoperative information allow to discuss with patients the proper technique when a HSA[5 cm2 is detected. During the follow-up a correlation between symptoms and failure of cruroplasty can be assessed. Conclusions: MDCT scan seems to be an effective non-invasive method to plan hiatal defect treatment and to check during the follow-up the potential recurrence. Future research should correlate in larger series imaging data with intraoperative findings

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Nonlinear effects in finite elements analysis of colorectal surgical clamping

    Get PDF
    Minimal Invasive Surgery (MIS) is a procedure that has increased its applications in past few years in different types of surgeries. As number of application fields are increasing day by day, new issues have been arising. In particular, instruments must be inserted through a trocar to access the abdominal cavity without capability of direct manipulation of tissues, so a loss of sensitivity occurs. Generally speaking, the student of medicine or junior surgeons need a lot of practice hours before starting any surgical procedure, since they have to difficulty in acquiring specific skills (hand–eye coordination among others) for this type of surgery. Here is what the surgical simulator present a promising training method using an approach based on Finite Element Method (FEM). The use of continuum mechanics, especially Finite Element Analysis (FEA) has gained an extensive application in medical field in order to simulate soft tissues. In particular, colorectal simulations can be used to understand the interaction between colon and the surrounding tissues and also between colon and instruments. Although several works have been introduced considering small displacements, FEA applied to colorectal surgical procedures with large displacements is a topic that asks for more investigations. This work aims to investigate how FEA can describe non-linear effects induced by material properties and different approximating geometries, focusing as test-case application colorectal surgery. More in detail, it shows a comparison between simulations that are performed using both linear and hyperelastic models. These different mechanical behaviours are applied on different geometrical models (planar, cylindrical, 3D-SS and a real model from digital acquisitions 3D-S) with the aim of evaluating the effects of geometric non-linearity. Final aim of the research is to provide a preliminary contribution to the simulation of the interaction between surgical instrument and colon tissues with multi-purpose FEA in order to help the preliminary set-up of different bioengineering tasks like force-contact evaluation or approximated modelling for virtual reality (surgical simulations). In particular, the contribution of this work is focused on the sensitivity analysis of the nonlinearities by FEA in the tissue-tool interaction through an explicit FEA solver. By doing in this way, we aim to demonstrate that the set-up of FEA computational surgical tools may be simplified in order to provide assistance to non-expert FEA engineers or medicians in more precise way of using FEA tools

    A Novel Minimally Invasive Tumour Localization Device

    Get PDF
    Lung cancer is one of the leading causes of death, by cancer. The usual treatment is surgical resection of tumours. However, patients who are weak or have poor pulmonary function are deemed unfit for surgery. For these patients, a minimally-invasive approach is desired. A major problem associated with minimally-invasive approaches is tumour localization in real time and accurate measurement of tool--tissue forces. This thesis describes the design, analysis, manufacturing and validation of a minimally-invasive instrument for tumour localization, named Palpatron. The instrument has an end effector that is able to support two previously designed jaws, one containing an ultrasound sensor and the other a tactile sensor. The jaws can move with two degrees of freedom to palpate tissue and rotate about the central axis of the instrument. The Palpatron has uncoupled jaw motion that allows for optimal alignment of sensors to improve data acquisition. The instrument can be easily assembled and disassembled allowing it to be cleaned and sterilized. The mechanism is articulated using push rods, each actuated by a motor. A semi-automatic control system was created for palpation. It is composed of a microcontroller that controls four motors via serial communication. In addition, the Palpatron has the ability to prevent tissue damage by measuring tool--tissue forces. Finite element analysis was used to guide material selection for designed components. Grade 5 titanium was selected for end effector links to provide a factor of safety of 1.2 against yielding under a 10 N point load at the tip of a jaw. The design was fabricated and validated by conducting experiments to test articulation and load carrying capacity. An 8-N force was applied to the instrument, which was successfully supported. The semi-automatic control system was used to perform basic maneuvering tasks to verify jaw motion capabilities. With positive testing results, the Palpatron forms the next step towards a comprehensive robotic-assisted palpation technology

    Modelling and simulation of flexible instruments for minimally invasive surgical training in virtual reality

    No full text
    Improvements in quality and safety standards in surgical training, reduction in training hours and constant technological advances have challenged the traditional apprenticeship model to create a competent surgeon in a patient-safe way. As a result, pressure on training outside the operating room has increased. Interactive, computer based Virtual Reality (VR) simulators offer a safe, cost-effective, controllable and configurable training environment free from ethical and patient safety issues. Two prototype, yet fully-functional VR simulator systems for minimally invasive procedures relying on flexible instruments were developed and validated. NOViSE is the first force-feedback enabled VR simulator for Natural Orifice Transluminal Endoscopic Surgery (NOTES) training supporting a flexible endoscope. VCSim3 is a VR simulator for cardiovascular interventions using catheters and guidewires. The underlying mathematical model of flexible instruments in both simulator prototypes is based on an established theoretical framework – the Cosserat Theory of Elastic Rods. The efficient implementation of the Cosserat Rod model allows for an accurate, real-time simulation of instruments at haptic-interactive rates on an off-the-shelf computer. The behaviour of the virtual tools and its computational performance was evaluated using quantitative and qualitative measures. The instruments exhibited near sub-millimetre accuracy compared to their real counterparts. The proposed GPU implementation further accelerated their simulation performance by approximately an order of magnitude. The realism of the simulators was assessed by face, content and, in the case of NOViSE, construct validity studies. The results indicate good overall face and content validity of both simulators and of virtual instruments. NOViSE also demonstrated early signs of construct validity. VR simulation of flexible instruments in NOViSE and VCSim3 can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. Moreover, in the context of an innovative and experimental technique such as NOTES, NOViSE could potentially facilitate its development and contribute to its popularization by keeping practitioners up to date with this new minimally invasive technique.Open Acces

    Robotic Liver Surgery

    Get PDF
    Minimally invasive surgery has experienced a significant expansion in the last decades. Robotic surgery has evolved in parallel to traditional laparoscopic surgery offering additional technical advantages. Some specific aspect of Hepatobiliary Surgery led to a limited implementation of minimally invasive liver surgery in the early years of laparoscopic surgery whilst we are experiencing an exponential increase in the use of minimally invasive approaches to this type of intervention. In this chapter we describe the key aspect of robotic liver surgery with a meticulous description of the supporting evidence, its limitation and future perspectives

    Neuromorphic vibrotactile stimulation of fingertips for encoding object stiffness in telepresence sensory substitution and augmentation applications

    Get PDF
    We present a tactile telepresence system for real-time transmission of information about object stiffness to the human fingertips. Experimental tests were performed across two laboratories (Italy and Ireland). In the Italian laboratory, a mechatronic sensing platform indented different rubber samples. Information about rubber stiffness was converted into on-off events using a neuronal spiking model and sent to a vibrotactile glove in the Irish laboratory. Participants discriminated the variation of the stiffness of stimuli according to a two-alternative forced choice protocol. Stiffness discrimination was based on the variation of the temporal pattern of spikes generated during the indentation of the rubber samples. The results suggest that vibrotactile stimulation can effectively simulate surface stiffness when using neuronal spiking models to trigger vibrations in the haptic interface. Specifically, fractional variations of stiffness down to 0.67 were significantly discriminated with the developed neuromorphic haptic interface. This is a performance comparable, though slightly worse, to the threshold obtained in a benchmark experiment evaluating the same set of stimuli naturally with the own hand. Our paper presents a bioinspired method for delivering sensory feedback about object properties to human skin based on contingency-mimetic neuronal models, and can be useful for the design of high performance haptic devices
    • …
    corecore