638 research outputs found

    Deep Learning for Processing Electromyographic Signals: a Taxonomy-based Survey

    Get PDF
    Deep Learning (DL) has been recently employed to build smart systems that perform incredibly well in a wide range of tasks, such as image recognition, machine translation, and self-driving cars. In several fields the considerable improvement in the computing hardware and the increasing need for big data analytics has boosted DL work. In recent years physiological signal processing has strongly benefited from deep learning. In general, there is an exponential increase in the number of studies concerning the processing of electromyographic (EMG) signals using DL methods. This phenomenon is mostly explained by the current limitation of myoelectric controlled prostheses as well as the recent release of large EMG recording datasets, e.g. Ninapro. Such a growing trend has inspired us to seek and review recent papers focusing on processing EMG signals using DL methods. Referring to the Scopus database, a systematic literature search of papers published between January 2014 and March 2019 was carried out, and sixty-five papers were chosen for review after a full text analysis. The bibliometric research revealed that the reviewed papers can be grouped in four main categories according to the final application of the EMG signal analysis: Hand Gesture Classification, Speech and Emotion Classification, Sleep Stage Classification and Other Applications. The review process also confirmed the increasing trend in terms of published papers, the number of papers published in 2018 is indeed four times the amount of papers published the year before. As expected, most of the analyzed papers (≈60 %) concern the identification of hand gestures, thus supporting our hypothesis. Finally, it is worth reporting that the convolutional neural network (CNN) is the most used topology among the several involved DL architectures, in fact, the sixty percent approximately of the reviewed articles consider a CNN

    Myoelectric forearm prostheses: State of the art from a user-centered perspective

    Get PDF
    User acceptance of myoelectric forearm prostheses is currently low. Awkward control, lack of feedback, and difficult training are cited as primary reasons. Recently, researchers have focused on exploiting the new possibilities offered by advancements in prosthetic technology. Alternatively, researchers could focus on prosthesis acceptance by developing functional requirements based on activities users are likely to perform. In this article, we describe the process of determining such requirements and then the application of these requirements to evaluating the state of the art in myoelectric forearm prosthesis research. As part of a needs assessment, a workshop was organized involving clinicians (representing end users), academics, and engineers. The resulting needs included an increased number of functions, lower reaction and execution times, and intuitiveness of both control and feedback systems. Reviewing the state of the art of research in the main prosthetic subsystems (electromyographic [EMG] sensing, control, and feedback) showed that modern research prototypes only partly fulfill the requirements. We found that focus should be on validating EMG-sensing results with patients, improving simultaneous control of wrist movements and grasps, deriving optimal parameters for force and position feedback, and taking into account the psychophysical aspects of feedback, such as intensity perception and spatial acuity

    Decoding HD-EMG Signals for Myoelectric Control-How Small Can the Analysis Window Size be?

    Get PDF

    Control Systems of Bionic Limbs of the New Generation and Control Systems with EMG Signals of VR and Games and Toys

    Get PDF
    The LLC Bionic Natali company is a startup and has been engaging in creation of bionic artificial limbs of hands for more than 2 years, and the LLC Bi-oN EMG was created one year ago on base of LLC Bionic Natali. From the first steps, projects had been directed on the solution of a problem of development of the domestic bionic functional artificial limb of the hand based on neural network and others algorithms. In projects, it had been created the functional system of management, system of tactile feedback which has increased controllability of a functional artificial limb is already realized and integrated, and also the functional bionic artificial limb of the hand. Based on this work it had been done the general representations and practical application of machine training, neural network and others algorithms. The technology of recognition of gestures of electromyographic activity based on neural network or an analog of network is the cornerstone. The bracelet is put on a hand (in case of disabled people, a stump), further noninvasive electrodes remove potential difference of neuromuscular activity; by means of an electric circuit there is data handling and their transmission to the processor where by means of a neural network there is a recognition of a gripper, further data are transferred for control of a bionic hand. This technology has also found so far mostly theoretical management, but undergoes testing practical, for control of the knee module of a bionic artificial limb of the lower limb. The technology of bracelet became the product of LLC Bi-oN EMG for virtual reality, games and rehabilitation. On the basis of this researches the important conclusion has been drawn: after carrying out operations within rehabilitation and the subsequent use to establish to the recommendation immediately bionic artificial limbs as eventually without trainings and also because of psychology of people “experience of management” the hand is lost, and without trainings of the muscle atrophy. But restoration is possible, alas, it will demand much more time, than in cases of immediate prosthetics by bionic/myoelectric artificial limbs. The current researches have also shown requirement of rehabilitation of disabled people before use of bionic artificial limbs of hands, use of an electromyographic bracelet of LLC Bi-oN EMG is offered as option

    sEMG-based hand gesture recognition with deep learning

    Get PDF
    Hand gesture recognition based on surface electromyographic (sEMG) signals is a promising approach for the development of Human-Machine Interfaces (HMIs) with a natural control, such as intuitive robot interfaces or poly-articulated prostheses. However, real-world applications are limited by reliability problems due to motion artifacts, postural and temporal variability, and sensor re-positioning. This master thesis is the first application of deep learning on the Unibo-INAIL dataset, the first public sEMG dataset exploring the variability between subjects, sessions and arm postures, by collecting data over 8 sessions of each of 7 able-bodied subjects executing 6 hand gestures in 4 arm postures. In the most recent studies, the variability is addressed with training strategies based on training set composition, which improve inter-posture and inter-day generalization of classical (i.e. non-deep) machine learning classifiers, among which the RBF-kernel SVM yields the highest accuracy. The deep architecture realized in this work is a 1d-CNN implemented in Pytorch, inspired by a 2d-CNN reported to perform well on other public benchmark databases. On this 1d-CNN, various training strategies based on training set composition were implemented and tested. Multi-session training proves to yield higher inter-session validation accuracies than single-session training. Two-posture training proves to be the best postural training (proving the benefit of training on more than one posture), and yields 81.2% inter-posture test accuracy. Five-day training proves to be the best multi-day training, and yields 75.9% inter-day test accuracy. All results are close to the baseline. Moreover, the results of multi-day trainings highlight the phenomenon of user adaptation, indicating that training should also prioritize recent data. Though not better than the baseline, the achieved classification accuracies rightfully place the 1d-CNN among the candidates for further research

    Bioformers: Embedding Transformers for Ultra-Low Power sEMG-based Gesture Recognition

    Get PDF
    Human-machine interaction is gaining traction in rehabilitation tasks, such as controlling prosthetic hands or robotic arms. Gesture recognition exploiting surface electromyographic (sEMG) signals is one of the most promising approaches, given that sEMG signal acquisition is non-invasive and is directly related to muscle contraction. However, the analysis of these signals still presents many challenges since similar gestures result in similar muscle contractions. Thus the resulting signal shapes are almost identical, leading to low classification accuracy. To tackle this challenge, complex neural networks are employed, which require large memory footprints, consume relatively high energy and limit the maximum battery life of devices used for classification. This work addresses this problem with the introduction of the Bioformers. This new family of ultra-small attention-based architectures approaches state-of-the-art performance while reducing the number of parameters and operations of 4.9x. Additionally, by introducing a new inter-subjects pre-training, we improve the accuracy of our best Bioformer by 3.39%, matching state-of-the-art accuracy without any additional inference cost.Deploying our best performing Bioformer on a Parallel, Ultra-Low Power (PULP) microcontroller unit (MCU), the GreenWaves GAP8, we achieve an inference latency and energy of 2.72 ms and 0.14 mJ, respectively, 8.0x lower than the previous state-of-the-art neural network, while occupying just 94.2 kB of memory

    Bioformers: Embedding Transformers for Ultra-Low Power sEMG-based Gesture Recognition

    Get PDF
    Human-machine interaction is gaining traction in rehabilitation tasks, such as controlling prosthetic hands or robotic arms. Gesture recognition exploiting surface electromyographic (sEMG) signals is one of the most promising approaches, given that sEMG signal acquisition is non-invasive and is directly related to muscle contraction. However, the analysis of these signals still presents many challenges since similar gestures result in similar muscle contractions. Thus the resulting signal shapes are almost identical, leading to low classification accuracy. To tackle this challenge, complex neural networks are employed, which require large memory footprints, consume relatively high energy and limit the maximum battery life of devices used for classification. This work addresses this problem with the introduction of the Bioformers. This new family of ultra-small attention-based architectures approaches state-of-the-art performance while reducing the number of parameters and operations of 4.9 ×. Additionally, by introducing a new inter-subjects pre-training, we improve the accuracy of our best Bioformer by 3.39 %, matching state-of-the-art accuracy without any additional inference cost. Deploying our best performing Bioformer on a Parallel, Ultra-Low Power (PULP) microcontroller unit (MCU), the GreenWaves GAP8, we achieve an inference latency and energy of 2.72 ms and 0.14 mJ, respectively, 8.0× lower than the previous state-of-the-art neural network, while occupying just 94.2 kB of memory
    corecore