22,165 research outputs found

    EyeScout: Active Eye Tracking for Position and Movement Independent Gaze Interaction with Large Public Displays

    Get PDF
    While gaze holds a lot of promise for hands-free interaction with public displays, remote eye trackers with their confined tracking box restrict users to a single stationary position in front of the display. We present EyeScout, an active eye tracking system that combines an eye tracker mounted on a rail system with a computational method to automatically detect and align the tracker with the user's lateral movement. EyeScout addresses key limitations of current gaze-enabled large public displays by offering two novel gaze-interaction modes for a single user: In "Walk then Interact" the user can walk up to an arbitrary position in front of the display and interact, while in "Walk and Interact" the user can interact even while on the move. We report on a user study that shows that EyeScout is well perceived by users, extends a public display's sweet spot into a sweet line, and reduces gaze interaction kick-off time to 3.5 seconds -- a 62% improvement over state of the art solutions. We discuss sample applications that demonstrate how EyeScout can enable position and movement-independent gaze interaction with large public displays

    GazeDrone: Mobile Eye-Based Interaction in Public Space Without Augmenting the User

    Get PDF
    Gaze interaction holds a lot of promise for seamless human-computer interaction. At the same time, current wearable mobile eye trackers require user augmentation that negatively impacts natural user behavior while remote trackers require users to position themselves within a confined tracking range. We present GazeDrone, the first system that combines a camera-equipped aerial drone with a computational method to detect sidelong glances for spontaneous (calibration-free) gaze-based interaction with surrounding pervasive systems (e.g., public displays). GazeDrone does not require augmenting each user with on-body sensors and allows interaction from arbitrary positions, even while moving. We demonstrate that drone-supported gaze interaction is feasible and accurate for certain movement types. It is well-perceived by users, in particular while interacting from a fixed position as well as while moving orthogonally or diagonally to a display. We present design implications and discuss opportunities and challenges for drone-supported gaze interaction in public

    EyeSpot: leveraging gaze to protect private text content on mobile devices from shoulder surfing

    Get PDF
    As mobile devices allow access to an increasing amount of private data, using them in public can potentially leak sensitive information through shoulder surfing. This includes personal private data (e.g., in chat conversations) and business-related content (e.g., in emails). Leaking the former might infringe on users’ privacy, while leaking the latter is considered a breach of the EU’s General Data Protection Regulation as of May 2018. This creates a need for systems that protect sensitive data in public. We introduce EyeSpot, a technique that displays content through a spot that follows the user’s gaze while hiding the rest of the screen from an observer’s view through overlaid masks. We explore different configurations for EyeSpot in a user study in terms of users’ reading speed, text comprehension, and perceived workload. While our system is a proof of concept, we identify crystallized masks as a promising design candidate for further evaluation with regard to the security of the system in a shoulder surfing scenario

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    VRpursuits: Interaction in Virtual Reality Using Smooth Pursuit Eye Movements

    Get PDF
    Gaze-based interaction using smooth pursuit eye movements (Pursuits) is attractive given that it is intuitive and overcomes the Midas touch problem. At the same time, eye tracking is becoming increasingly popular for VR applications. While Pursuits was shown to be effective in several interaction contexts, it was never explored in-depth for VR before. In a user study (N=26), we investigated how parameters that are specific to VR settings influence the performance of Pursuits. For example, we found that Pursuits is robust against different sizes of virtual 3D targets. However performance improves when the trajectory size (e.g., radius) is larger, particularly if the user is walking while interacting. While walking, selecting moving targets via Pursuits is generally feasible albeit less accurate than when stationary. Finally, we discuss the implications of these findings and the potential of smooth pursuits for interaction in VR by demonstrating two sample use cases: 1) gaze-based authentication in VR, and 2) a space meteors shooting game

    Understanding face and eye visibility in front-facing cameras of smartphones used in the wild

    Get PDF
    Commodity mobile devices are now equipped with high-resolution front-facing cameras, allowing applications in biometrics (e.g., FaceID in the iPhone X), facial expression analysis, or gaze interaction. However, it is unknown how often users hold devices in a way that allows capturing their face or eyes, and how this impacts detection accuracy. We collected 25,726 in-the-wild photos, taken from the front-facing camera of smartphones as well as associated application usage logs. We found that the full face is visible about 29% of the time, and that in most cases the face is only partially visible. Furthermore, we identified an influence of users' current activity; for example, when watching videos, the eyes but not the entire face are visible 75% of the time in our dataset. We found that a state-of-the-art face detection algorithm performs poorly against photos taken from front-facing cameras. We discuss how these findings impact mobile applications that leverage face and eye detection, and derive practical implications to address state-of-the art's limitations

    EyePACT: eye-based parallax correction on touch-enabled interactive displays

    Get PDF
    The parallax effect describes the displacement between the perceived and detected touch locations on a touch-enabled surface. Parallax is a key usability challenge for interactive displays, particularly for those that require thick layers of glass between the screen and the touch surface to protect them from vandalism. To address this challenge, we present EyePACT, a method that compensates for input error caused by parallax on public displays. Our method uses a display-mounted depth camera to detect the user's 3D eye position in front of the display and the detected touch location to predict the perceived touch location on the surface. We evaluate our method in two user studies in terms of parallax correction performance as well as multi-user support. Our evaluations demonstrate that EyePACT (1) significantly improves accuracy even with varying gap distances between the touch surface and the display, (2) adapts to different levels of parallax by resulting in significantly larger corrections with larger gap distances, and (3) maintains a significantly large distance between two users' fingers when interacting with the same object. These findings are promising for the development of future parallax-free interactive displays

    Learning to Find Eye Region Landmarks for Remote Gaze Estimation in Unconstrained Settings

    Full text link
    Conventional feature-based and model-based gaze estimation methods have proven to perform well in settings with controlled illumination and specialized cameras. In unconstrained real-world settings, however, such methods are surpassed by recent appearance-based methods due to difficulties in modeling factors such as illumination changes and other visual artifacts. We present a novel learning-based method for eye region landmark localization that enables conventional methods to be competitive to latest appearance-based methods. Despite having been trained exclusively on synthetic data, our method exceeds the state of the art for iris localization and eye shape registration on real-world imagery. We then use the detected landmarks as input to iterative model-fitting and lightweight learning-based gaze estimation methods. Our approach outperforms existing model-fitting and appearance-based methods in the context of person-independent and personalized gaze estimation
    • …
    corecore