546 research outputs found

    Driver monitoring system based on eye tracking

    Get PDF
    Dissertação de mestrado integrado em Engenharia Electrónica Industrial e ComputadoresRecent statistics indicate that driver drowsiness is one of the major causes of road accidents and deaths behind the wheel. This reveals the need of reliable systems capable of predict when drivers are in this state and warn them in order to avoid crashes with other vehicles or stationary objects. Therefore, the purpose of this dissertation is to develop a driver’s monitoring system based on eye tracking that will be able to detect driver’s drowsiness level and actuate accordingly. The alert to the driver may vary from a message on the cluster to a vibration on the seat. The proposed algorithm to estimate driver’s state only requires one variable: eyelid opening. Through this variable the algorithm computes several eye parameters used to decide if the driver is drowsy or not, namely: PERCLOS, blink frequency and blink duration. Eyelid opening is obtained over a software and hardware platform called SmartEye Pro. This eye tracking system uses infrared cameras and computer vision software to gather eye’s state information. Additionally, since this dissertation is part of the project "INNOVATIVE CAR HMI", from Bosch and University of Minho partnership, the driver monitoring system will be integrated in the Bosch DSM (Driver Simulator Mockup).Estatísticas recentes indicam que a sonolência do condutor é uma das principais causas de acidentes e mortes nas estradas. Isto revela a necessidade de sistemas fiáveis capazes de prever quando um condutor está sonolento e avisá-lo, de modo a evitar colisões com outros veículos ou objetos estacionários. Portanto, o propósito desta dissertação é desenvolver um sistema de monitorização do condutor baseado em eye tracking que será capaz de detetar o nível de sonolência do condutor e atuar em conformidade. O alerta para o condutor pode variar entre uma mensagem no painel de instrumentos ou uma vibração no assento. O algoritmo proposto para estimar o estado do condutor apenas requer a aquisição de uma variável: abertura da pálpebra. Através desta variável, o algoritmo computa alguns parâmetros utilizados para verificar se o condutor está sonolento ou não, nomeadamente: PERCLOS, frequência do pestanejar e duração do pestanejar. A abertura da pálpebra é obtida através de uma plataforma de hardware e software chamada SmartEye Pro. Esta plataforma de eye tracking utiliza câmaras infravermelho e software de visão por computador para obter informação sobre o estado dos olhos. Adicionalmente, uma vez que esta dissertação está inserida projeto: "INNOVATIVE CAR HMI", da parceria entre a Bosch e a Universidade do Minho, o sistema desenvolvido será futuramente integrado no Bosch DSM (Driver Simulator Mockup)

    The effect of electronic word of mouth communication on purchase intention moderate by trust: a case online consumer of Bahawalpur Pakistan

    Get PDF
    The aim of this study is concerned with improving the previous research finding complete filling the research gaps and introducing the e-WOM on purchase intention and brand trust as a moderator between the e-WOM, and purchase intention an online user in Bahawalpur city Pakistan, therefore this study was a focus at linking the research gap of previous literature of past study based on individual awareness from the real-life experience. we collected data from the online user of the Bahawalpur Pakistan. In this study convenience sampling has been used to collect data and instruments of this study adopted from the previous study. The quantitative research methodology used to collect data, survey method was used to assemble data for this study, 300 questionnaire were distributed in Bahawalpur City due to the ease, reliability, and simplicity, effective recovery rate of 67% as a result 202 valid response was obtained for the effect of e-WOM on purchase intention and moderator analysis has been performed. Hypotheses of this research are analyzed by using Structural Equation Modeling (SEM) based on Partial Least Square (PLS). The result of this research is e-WOM significantly positive effect on purchase intention and moderator role of trust significantly affects the relationship between e-WOM, and purchase intention. The addition of brand trust in the model has contributed to the explanatory power, some studied was conduct on brand trust as a moderator and this study has contributed to the literature in this favor. significantly this study focused on current marketing research. Unlike past studies focused on western context, this study has extended the regional literature on e-WOM, and purchase intention to be intergrading in Bahawalpur Pakistan context. Lastly, future studies are recommended to examine the effect of trust in other countries allow for the comparison of the findings

    Enhancing protection of vehicle drivers and road safety by deploying ADAS and Facial Features Pattern Analysis (FFPA) technologies

    Get PDF
    The latest technology associated with Intelligent Transportation Systems (ITS) have been designed with the aim to minimize the numbers of person injury in road accidents and improve the overall road safety. The driver behavior is one major concern in many accidents in HK urban road links. In particular, the driver\u27s attitudes, such as fatigue, drowsiness and concentration are the major causes to road accidents. It will affect the driver\u27s ability and decisions in properly controlling their vehicles. Very often, this kind of driver distraction is particularly obvious when driving after 2 to 3 hours from most research sources. In the traffic data sourced from Transport Department of HKSAR, around 82% of the personal injury in road accidents belongs to the driver\u27s fault. This paper used the latest technology and applied it to a group of transport vehicles, i.e. taxi. The objective is set up to monitor, record and analyze the fatigue and drowsiness situation of drivers by means of advanced AI system, facial recognition detection system (the sensors) and early warning devices (LDWS) via ADAS technology. The result will be used to give real time early warning and subsequent analysis for the transport operators or researchers for better and safer management of their transport fleets. The system aimed to have a good precaution and protection on all road users, including drivers, passengers and pedestrians. In turn, it largely saves our community resources, such as the medical and social services consumed on treating the injured persons

    An In-Vehicle Vision-Based Driver's Drowsiness Detection System

    Get PDF
    [[abstract]]Many traffic accidents have been reported due to driver’s drowsiness/fatigue. Drowsiness degrades driving performance due to the declinations of visibility, situational awareness and decision-making capability. In this study, a vision-based drowsiness detection and warning system is presented, which attempts to bring to the attention of a driver to his/her own potential drowsiness. The information provided by the system can also be utilized by adaptive systems to manage noncritical operations, such as starting a ventilator, spreading fragrance, turning on a radio, and providing entertainment options. In high drowsiness situation, the system may initiate navigation aids and alert others to the drowsiness of the driver. The system estimates the fatigue level of a driver based on his/her facial images acquired by a video camera mounted in the front of the vehicle. There are five major steps involved in the system process: preprocessing, facial feature extraction, face tracking, parameter estimation, and reasoning. In the preprocessing step, the input image is sub-sampled for reducing the image size and in turn the processing time. A lighting compensation process is next applied to the reduced image in order to remove the influences of ambient illumination variations. Afterwards, for each image pixel a number of chrominance values are calculated, which are to be used in the next step for detecting facial features. There are four sub-steps constituting the feature extraction step: skin detection, face localization, eyes and mouth detection, and feature confirmation. To begin, the skin areas are located in the image based on the chrominance values of pixels calculated in the previous step and a predefined skin model. We next search for the face region within the largest skin area. However, the detected face is typically imperfect. Facial feature detection within the imperfect face region is unreliable. We actually look for facial features throughout the entire image. As to the face region, it will later be used to confirm the detected facial features. Once facial features are located, they are tracked over the video sequence until they are missed detecting in a video image. At this moment, the facial feature detection process is revoked again. Although facial feature detection is time consuming, facial feature tracking is fast and reliable. During facial feature tracking, parameters of facial expression, including percentage of eye closure over time, eye blinking frequency, durations of eye closure, gaze and mouth opening, as well as head orientation, are estimated. The estimated parameters are then utilized in the reasoning step to determine the driver’s drowsiness level. A fuzzy integral technique is employed, which integrates various types of parameter values to arrive at a decision about the drowsiness level of the driver. A number of video sequences of different drivers and illumination conditions have been tested. The results revealed that our system can work reasonably in daytime. We may extend the system in the future work to apply in nighttime. For this, infrared sensors should be included.

    Physiological-based Driver Monitoring Systems: A Scoping Review

    Get PDF
    A physiological-based driver monitoring system (DMS) has attracted research interest and has great potential for providing more accurate and reliable monitoring of the driver’s state during a driving experience. Many driving monitoring systems are driver behavior-based or vehicle-based. When these non-physiological based DMS are coupled with physiological-based data analysis from electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG), and electromyography (EMG), the physical and emotional state of the driver may also be assessed. Drivers’ wellness can also be monitored, and hence, traffic collisions can be avoided. This paper highlights work that has been published in the past five years related to physiological-based DMS. Specifically, we focused on the physiological indicators applied in DMS design and development. Work utilizing key physiological indicators related to driver identification, driver alertness, driver drowsiness, driver fatigue, and drunk driver is identified and described based on the PRISMA Extension for Scoping Reviews (PRISMA-Sc) Framework. The relationship between selected papers is visualized using keyword co-occurrence. Findings were presented using a narrative review approach based on classifications of DMS. Finally, the challenges of physiological-based DMS are highlighted in the conclusion. Doi: 10.28991/CEJ-2022-08-12-020 Full Text: PD

    Unobtrusive Health Monitoring in Private Spaces: The Smart Vehicle

    Get PDF
    Unobtrusive in-vehicle health monitoring has the potential to use the driving time to perform regular medical check-ups. This work intends to provide a guide to currently proposed sensor systems for in-vehicle monitoring and to answer, in particular, the questions: (1) Which sensors are suitable for in-vehicle data collection? (2) Where should the sensors be placed? (3) Which biosignals or vital signs can be monitored in the vehicle? (4) Which purposes can be supported with the health data? We reviewed retrospective literature systematically and summarized the up-to-date research on leveraging sensor technology for unobtrusive in-vehicle health monitoring. PubMed, IEEE Xplore, and Scopus delivered 959 articles. We firstly screened titles and abstracts for relevance. Thereafter, we assessed the entire articles. Finally, 46 papers were included and analyzed. A guide is provided to the currently proposed sensor systems. Through this guide, potential sensor information can be derived from the biomedical data needed for respective purposes. The suggested locations for the corresponding sensors are also linked. Fifteen types of sensors were found. Driver-centered locations, such as steering wheel, car seat, and windscreen, are frequently used for mounting unobtrusive sensors, through which some typical biosignals like heart rate and respiration rate are measured. To date, most research focuses on sensor technology development, and most application-driven research aims at driving safety. Health-oriented research on the medical use of sensor-derived physiological parameters is still of interest
    corecore