718 research outputs found

    Effectiveness analysis of traditional and mixed reality simulations in medical training: a methodological approach for the assessment of stress, cognitive load and performance

    Get PDF
    La simulazione nell'educazione in medicina è considerata un metodo di formazione in grado di migliorare le competenze cliniche e il comportamento degli operatori sanitari e, di conseguenza, la qualità dell'assistenza per il paziente. Inoltre, l'utilizzo di nuove tecnologie come la Realtà Aumentata, offre ai discenti l'opportunità di esercitarsi in un ambiente immersivo. L'opportunità di sperimentare questo innovativo metodo didattico è efficace non solo nel ridurre il rischio di errori e approcci sbagliati ma anche nel provare ansia e stress simili a quelli avvertiti nella pratica reale. La sfida sta nel trovare il giusto equilibrio. I discenti devono infatti provare lo stesso stress che avvertirebbero lavorando ad un vero caso clinico ma, allo stesso tempo, devono essere controllati ed evitati possibili disturbi da stress post-traumatico, verificabili soprattutto nel campo della gestione delle emergenze (pronto soccorso). Inoltre, è fondamentale anche ottenere alte prestazioni e un apprendimento adeguato, evitando sovraccarichi cognitivi che influenzerebbero negativamente l’apprendimento. Tuttavia, ad oggi mancano ancora studi approfonditi sull'impatto che le simulazioni mediche hanno su stress, frustrazione, carico cognitivo e apprendimento dei discenti. Per questo motivo, l'obiettivo principale di questo studio è valutare l'efficacia del training tramite simulazione, analizzando prestazioni, ansia, stress e carico cognitivo durante simulazioni cliniche tradizionali (con manichino) ed avanzate (in realtà mista). A questo scopo, è stato sviluppato un approccio metodologico strutturato e completo per valutare le prestazioni, le condizioni emotive e cognitive degli studenti. Questo comprende l'acquisizione e l'analisi di parametri psicologici (valutazione soggettiva), segnali biometrici (valutazione oggettiva) e prestazioni. Questa indagine consente di evidenziare i punti deboli delle simulazioni e offre l'opportunità di definire utili linee guida per la riprogettazione e l'ottimizzazione delle stesse. La metodologia è stata applicata su tre casi studio: il primo si riferisce a simulazioni ad alta fedeltà per la gestione del paziente in pronto soccorso, il secondo si riferisce a simulazioni a bassa fedeltà per la pratica della rachicentesi. Per il terzo caso studio, è stato progettato e sviluppato un prototipo di simulatore in realtà mista per la rachicentesi, con l'obiettivo di migliorare il senso di realismo e immersione della simulazione a bassa fedeltà. 148 studenti sono stati coinvolti nei primi due casi studio osservazionali, mentre soltanto 36 studenti hanno preso parte allo studio pilota sulla simulazione in realtà mista. In tutti i casi di studio sono state effettuate analisi descrittive delle prestazioni, degli stati cognitivi ed emotivi. Per le simulazioni ad alta e bassa fedeltà, le analisi di regressione statistica hanno evidenziato quali variabili influenzano le prestazioni, lo stress e il carico cognitivo degli studenti. Per lo studio pilota sulla realtà mista, l'analisi della user experience ha sottolineato i limiti tecnici della nuova tecnologia.Simulation in medical education is considered a training method capable of improving clinical competence and practitioners’ behaviour, and, consequently quality of care and patient’s outcome. Moreover, the use of new technologies, such as augmented reality, offers to the learners the opportunity to engage themselves in an immersive environment. The opportunity to experiment with this innovative instructional method is effective not only in reducing the risk of errors and wrong approaches but also in experiencing anxiety and stress as in real practice. The challenge is to find the right stress balance: learners have to feel as if they were practicing in the real stressful clinical case, and, at the same time, post-traumatic stress disorders, verifiable especially in the emergency field, must be controlled and avoided. Moreover, it is fundamental also to obtain high performance and learning, thus avoiding cognitive overloads. However, extensive researches about the impact of medical simulations on students’ stress, frustration, cognitive load, and learning are still lacking. For this reason, the main objective of this study is to assess simulation training effectiveness by analysing performance, anxiety, stress, and cognitive load during traditional (with manikin) and advanced (with augmented reality) clinical simulations. A structured and comprehensive methodological approach to assess performance, emotional and cognitive conditions of students has been developed. It includes the acquisition and analysis of psychological parameters (subjective assessment), biometric signals (objective assessment), and task performance. This investigation allows to point out simulations’ weaknesses and offers the opportunity to define useful optimisation guidelines. The methodology has been applied to three case studies: the first one refers to high-fidelity simulations, for the patient management in the emergency room, the second one refers to low-fidelity simulation for rachicentesis. For the third case study, a prototype of a mixed reality simulator for the rachicentesis practice has been designed and developed aiming at improving the sense of realism and immersion of the low-fidelity simulation. While 148 students have been enrolled in the first two case studies, only 36 students have taken part in the pilot study about mixed reality simulation. Descriptive analysis about performance, cognitive and emotional states have been done in all the case studies. For the high-fidelity and low-fidelity simulations, the statistical regression analysis has pointed out which variables affect students’ performance, stress, and cognitive load. For the pilot study about mixed reality, the user experience analysis highlighted the technical limitations of the new technology

    Workshop 13. Clinical Diagnostic Reasoning: Equipping students with peer instruction skills to work together in developing their diagnostic reasoning

    Get PDF
    Workshop Format An introductory presentation covering best evidence in current medical education literature regarding development of diagnostic clinical reasoning skills for undergraduate students Small group work focusing on clinical tutor- identified real case scenarios to enable delegates to identify teaching and learning approaches to help undergraduate students to develop diagnostic reasoning skills. This will include consideration of facilitation of peer-peer approaches for development of clinical reasoning skills A closing plenary will include • DVD demonstrating the authors’ approach to facilitation of skills development in this area • Further discussion about the student-led approach • Reflection on incorporating novel approaches in delegates` own curriculum and teaching sessions • Presentation of the authors student “pocket guide” hand-out • Questions/Answers/Sharing best practice. Workshop Submissions Objectives To consider clinical tutor-identified, specific, student cognitive-processing difficulties in clinical diagnostic reasoning in contemporary systems based curricula. o consider specific challenges for students in developing their own clinical reasoning skills, following a transition from university to clinical teaching environments. To aid development of students` ability to consider their own clinical reasoning skills and facilitate development of these skills in their colleagues To share best practice with colleagues To discuss the authors` example of curricular innovation in this area Intended audience Tutors responsible for delivering clinical skills/ clinical reasoning teaching in undergraduate training

    Conceptualizing Interactions of Augmented Reality Solutions

    Get PDF
    The rapid evolution of augmented reality has resulted in an ever-increasing number of applications in a wide range of industries and services. Despite this progress, there is still a lack of conceptual understanding of AR interactions and the entire solution space. To bridge this gap, we conceptualize AR solution interactions and provide a comprehensive taxonomy. To represent the state-of-the-art, we build upon an extensive literature review. The resulting taxonomy consists of seven dimensions that encompass 29 characteristics. We contribute to the understanding of AR interactions and, as a result, the applicability of AR solutions in businesses by developing the taxonomy. Likewise, the taxonomy can guide the design of AR solutions as it convincingly describes the solution space

    Visualization and Interaction Technologies in Serious and Exergames for Cognitive Assessment and Training: A Survey on Available Solutions and Their Validation

    Get PDF
    Exergames and serious games, based on standard personal computers, mobile devices and gaming consoles or on novel immersive Virtual and Augmented Reality techniques, have become popular in the last few years and are now applied in various research fields, among which cognitive assessment and training of heterogeneous target populations. Moreover, the adoption of Web based solutions together with the integration of Artificial Intelligence and Machine Learning algorithms could bring countless advantages, both for the patients and the clinical personnel, as allowing the early detection of some pathological conditions, improving the efficacy and adherence to rehabilitation processes, through the personalisation of training sessions, and optimizing the allocation of resources by the healthcare system. The current work proposes a systematic survey of existing solutions in the field of cognitive assessment and training. We evaluate the visualization and interaction technologies commonly adopted and the measures taken to fulfil the need of the pathological target populations. Moreover, we analyze how implemented solutions are validated, i.e. The chosen experimental designs, data collection and analysis. Finally, we consider the availability of the applications and raw data to the large community of researchers and medical professionals and the actual application of proposed solutions in the standard clinical practice. Despite the potential of these technologies, research is still at an early stage. Although the recent release of accessible immersive virtual reality headsets and the increasing interest on vision-based techniques for tracking body and hands movements, many studies still rely on non-immersive virtual reality (67.2%), mainly mobile and personal computers, and standard gaming tools for interactions (41.5%). Finally, we highlight that although the interest of research community in this field is increasingly higher, the sharing of dataset (10.6%) and implemented applications (3.8%) should be promoted and the number of healthcare structures which have successfully introduced the new technological approaches in the treatment of their host patients is limited (10.2%)
    • …
    corecore