3,065 research outputs found

    Detecting fish aggregations from reef habitats mapped with high resolution side scan sonar imagery

    Get PDF
    As part of a multibeam and side scan sonar (SSS) benthic survey of the Marine Conservation District (MCD) south of St. Thomas, USVI and the seasonal closed areas in St. Croix—Lang Bank (LB) for red hind (Epinephelus guttatus) and the Mutton Snapper (MS) (Lutjanus analis) area—we extracted signals from water column targets that represent individual and aggregated fish over various benthic habitats encountered in the SSS imagery. The survey covered a total of 18 km2 throughout the federal jurisdiction fishery management areas. The complementary set of 28 habitat classification digital maps covered a total of 5,462.3 ha; MCDW (West) accounted for 45% of that area, and MCDE (East) 26%, LB 17%, and MS the remaining 13%. With the exception of MS, corals and gorgonians on consolidated habitats were significantly more abundant than submerged aquatic vegetation (SAV) on unconsolidated sediments or unconsolidated sediments. Continuous coral habitat was the most abundant consolidated habitat for both MCDW and MCDE (41% and 43% respectively). Consolidated habitats in LB and MS predominantly consisted of gorgonian plain habitat with 95% and 83% respectively. Coral limestone habitat was more abundant than coral patch habitat; it was found near the shelf break in MS, MCDW, and MCDE. Coral limestone and coral patch habitats only covered LB minimally. The high spatial resolution (0.15 m) of the acquired imagery allowed the detection of differing fish aggregation (FA) types. The largest FA densities were located at MCDW and MCDE over coral communities that occupy up to 70% of the bottom cover. Counts of unidentified swimming objects (USOs), likely representing individual fish, were similar among locations and occurred primarily over sand and shelf edge areas. Fish aggregation school sizes were significantly smaller at MS than the other three locations (MCDW, MCDE, and LB). This study shows the advantages of utilizing SSS in determining fish distributions and density

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Seabed fluid flow-related processes: evidence and quantification based on high-resolution imaging techniques and GIS analyses

    Get PDF
    This work provides new insights on different aspects of seabed fluid flow processes based on seafloor observations. The methods used entirely rely on ROV-based high-resolution imaging and mapping techniques. Optical data are used to produce visual maps of the seafloor, in the form of geo-referenced video- and photo-mosaics, whereas acoustic techniques allow mapping the micro-bathymetry of the seabed, as well as the signal reflectivity of the sediment surface and of the water column. This work presents three case studies, about two sites of seabed fluid flow: the Menez Gwen hydrothermal vent on the MAR and the REGAB pockmark in the Lower Congo Basin. On the technical side, some of the high-resolution techniques used in this thesis are not commonly used by the marine scientific community. This is particularly the case for large-area photo-mosaics. Although the interest in mosaicking is growing, there are still no tools freely and readily available to scientists to routinely construct large-area photo-mosaics. Therefore, this work presents a MATLAB toolbox for large-area photo-mosaicking (LAPM toolbox), which was developed as part of this thesis

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas

    Application of Hyperspectral Imaging to Underwater Habitat Mapping, Southern Adriatic Sea

    Get PDF
    Hyperspectral imagers enable the collection of high-resolution spectral images exploitable for the supervised classification of habitats and objects of interest (OOI). Although this is a well-established technology for the study of subaerial environments, Ecotone AS has developed an underwater hyperspectral imager (UHI) system to explore the properties of the seafloor. The aim of the project is to evaluate the potential of this instrument for mapping and monitoring benthic habitats in shallow and deep-water environments. For the first time, we tested this system at two sites in the Southern Adriatic Sea (Mediterranean Sea): the cold-water coral (CWC) habitat in the Bari Canyon and the Coralligenous habitat off Brindisi. We created a spectral library for each site, considering the different substrates and the main OOI reaching, where possible, the lower taxonomic rank. We applied the spectral angle mapper (SAM) supervised classification to map the areal extent of the Coralligenous and to recognize the major CWC habitat-formers. Despite some technical problems, the first results demonstrate the suitability of the UHI camera for habitat mapping and seabed monitoring, through the achievement of quantifiable and repeatable classifications

    Pose Detection and Control of Unmanned Underwater Vehicles (UUVs) Utilizing an Optical Detector Array

    Get PDF
    As part of the research for development of a leader-follower formation between unmanned underwater vehicles (UUVs), this study presents an optical feedback system for UUV navigation via an optical detector array. Capabilities of pose detection and control in a static-dynamic system (e.g. UUV navigation into a docking station) and a dynamic-dynamic system (e.g. UUV to UUV leader-follower system) are investigated. In both systems, a single light source is utilized as a guiding beacon for a tracker/follower UUV. The UUV uses an optical array consisting of photodiodes to receive the light field emitted from the light source. For UUV navigation applications, accurate pose estimation is essential. In order to evaluate the feasibility of underwater distance detection, the effective communication range between two platforms, i.e. light source and optical detector, and the optimum spectral range that allowed maximum light transmission are calculated. Based on the light attenuation in underwater, the geometry and dimensions of an optical detector array are determined, and the boundary conditions for the developed pose detection algorithms along with the error sources in the experiments are identified. As a test bed to determine optical array dimensions and size, a simulator, i.e. numerical software, is developed, where planar and curved array geometries of varying number of elements are analytically compared and evaluated. Results show that the curved optical detector array is able to distinguish 5 degree- of-freedom (DOF) motion (translation in x, y, z-axes and pitch and yaw rotations) with respect to a single light source. Analytical pose detection and control algorithms are developed for both static-dynamic and dynamic-dynamic systems. Results show that a 5 x 5 curved detector array with the implementation of SMC is reasonably sufficient for practical UUV positioning applications. The capabilities of an optical detector array to determine the pose of a UUV in 3-DOF (x, y and z-axes) are experimentally tested. An experimental platform consisting of a 5 x 5 photodiode array mounted on a hemispherical surface is used to sample the light field emitted from a single light source. Pose detection algorithms are developed to detect pose for steady-state and dynamic cases. Monte Carlo analysis is conducted to assess the pose estimation uncertainty under varying environmental and hardware conditions such as water turbidity, temperature variations in water and electrically-based noise. Monte Carlo analysis results show that the pose uncertainties (within 95% confidence interval) associated with x, y and z-axes are 0.78 m, 0.67 m and 0.56 m, respectively. Experimental results demonstrate that x, y and z-axes pose estimates are accurate to within 0.5 m, 0.2 m and 0.2 m, respectively

    Selected Papers from the 2018 IEEE International Workshop on Metrology for the Sea

    Get PDF
    This Special Issue is devoted to recent developments in instrumentation and measurement techniques applied to the marine field. ¶The sea is the medium that has allowed people to travel from one continent to another using vessels, even today despite the use of aircraft. It has also been acting as a great reservoir and source of food for all living beings. However, for many generations, it served as a landfill for depositing conventional and nuclear wastes, especially in its deep seabeds, and we are assisting in a race to exploit minerals and resources, different from foods, encompassed in it. Its health is a great challenge for the survival of all humanity since it is one of the most important environmental components targeted by global warming. ¶ As everyone may know, measuring is a step that generates substantial knowledge about a phenomenon or an asset, which is the basis for proposing correct solutions and making proper decisions. However, measurements in the sea environment pose unique difficulties and opportunities, which is made clear from the research results presented in this Special Issue

    Applications of geo-referenced underwater photo mosaics in marine biology and archaeology

    Get PDF
    Author Posting. © Oceanography Society, 2007. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 20, 4 (2007): 140-149.In deep water, below the photic zone, still and video imaging of the seabed requires artificial lighting. Light absorption and backscatter caused by typical seawater components, such as dissolved organic matter, plankton, and inorganic particles, often limit the artificially lit area to a few square meters. To obtain high-resolution photographic data of larger seabed areas, a series of images can be compiled into a photo mosaic. Image mosaics are easier to interpret, communicate, and exhibit than video footage or a series of images, because the individual image frames in a photo mosaic are naturally represented in a spatial context

    Deep learning for internet of underwater things and ocean data analytics

    Get PDF
    The Internet of Underwater Things (IoUT) is an emerging technological ecosystem developed for connecting objects in maritime and underwater environments. IoUT technologies are empowered by an extreme number of deployed sensors and actuators. In this thesis, multiple IoUT sensory data are augmented with machine intelligence for forecasting purposes

    Toward autonomous exploration in confined underwater environments

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Journal of Field Robotics 33 (2016): 994-1012, doi:10.1002/rob.21640.In this field note we detail the operations and discuss the results of an experiment conducted in the unstructured environment of an underwater cave complex, using an autonomous underwater vehicle (AUV). For this experiment the AUV was equipped with two acoustic sonar to simultaneously map the caves’ horizontal and vertical surfaces. Although the caves’ spatial complexity required AUV guidance by a diver, this field deployment successfully demonstrates a scan matching algorithm in a simultaneous localization and mapping (SLAM) framework that significantly reduces and bounds the localization error for fully autonomous navigation. These methods are generalizable for AUV exploration in confined underwater environments where surfacing or pre-deployment of localization equipment are not feasible and may provide a useful step toward AUV utilization as a response tool in confined underwater disaster areas.This research work was partially sponsored by the EU FP7-Projects: Tecniospring- Marie Curie (TECSPR13-1-0052), MORPH (FP7-ICT-2011-7-288704), Eurofleets2 (FP7-INF-2012-312762), and the National Science Foundation (OCE-0955674)
    • …
    corecore