43 research outputs found

    Evaluación del registro y transmisión de señales electromiográficas mediante un dispositivo inalámbrico

    Get PDF
    Los dispositivos vestibles son aquellos dispositivos que se incorporan a piezas de ropa u otros accesorios que se puedan llevar cómodamente en el cuerpo. Estos dispositivos funcionan habitualmente mediante la comunicación inalámbrica. Esta comunicación consiste en la transmisión de información entre dos o más puntos que no están conectados mediante un conductor eléctrico. Shimmer es un dispositivo multisensor vestible con unas prestaciones muy altas que lo diferencian de otros dispositivos y que permite de una forma simple la medida de parámetros cinemáticos y fisiológicos que pueden ser capturados y visualizados en tiempo real. Sin embargo, estos dispositivos pueden presentar pérdidas de datos durante la adquisición de señales biomédicas. En este estudio se ha evaluado la pérdida de datos durante la adquisición de señales cinemáticas y fisiológicas. Se han realizado registros electromiográficos de músculos esqueléticos usando las distintas vías de registro y configuraciones que ofrece el dispositivo. Los registros se han realizado en un sujeto sano. Se ha observado que a medida que se incrementa la frecuencia de muestreo y a un mayor número de canales, la cantidad de pérdidas aumenta. En general, a una frecuencia de muestreo de 512 Hz el dispositivo Shimmer es capaz de obtener señales sin pérdidas sin importar la vía de registro utilizada.Postprint (author's final draft

    Wellness, Fitness, and Lifestyle Sensing Applications

    Get PDF

    Review of Wearable Devices and Data Collection Considerations for Connected Health

    Get PDF
    Wearable sensor technology has gradually extended its usability into a wide range of well-known applications. Wearable sensors can typically assess and quantify the wearer’s physiology and are commonly employed for human activity detection and quantified self-assessment. Wearable sensors are increasingly utilised to monitor patient health, rapidly assist with disease diagnosis, and help predict and often improve patient outcomes. Clinicians use various self-report questionnaires and well-known tests to report patient symptoms and assess their functional ability. These assessments are time consuming and costly and depend on subjective patient recall. Moreover, measurements may not accurately demonstrate the patient’s functional ability whilst at home. Wearable sensors can be used to detect and quantify specific movements in different applications. The volume of data collected by wearable sensors during long-term assessment of ambulatory movement can become immense in tuple size. This paper discusses current techniques used to track and record various human body movements, as well as techniques used to measure activity and sleep from long-term data collected by wearable technology devices

    Key Generation for Internet of Things

    Get PDF
    Key generation is a promising technique to bootstrap secure communications for the Internet of Things devices that have no prior knowledge between each other. In the past few years, a variety of key generation protocols and systems have been proposed. In this survey, we review and categorise recent key generation systems based on a novel taxonomy. Then, we provide both quantitative and qualitative comparisons of existing approaches. We also discuss the security vulnerabilities of key generation schemes and possible countermeasures. Finally, we discuss the current challenges and point out several potential research directions

    An IoT based Virtual Coaching System (VSC) for Assisting Activities of Daily Life

    Get PDF
    Nowadays aging of the population is becoming one of the main concerns of theworld. It is estimated that the number of people aged over 65 will increase from 461million to 2 billion in 2050. This substantial increment in the elderly population willhave significant consequences in the social and health care system. Therefore, in thecontext of Ambient Intelligence (AmI), the Ambient Assisted Living (AAL) has beenemerging as a new research area to address problems related to the aging of the population. AAL technologies based on embedded devices have demonstrated to be effectivein alleviating the social- and health-care issues related to the continuous growing of theaverage age of the population. Many smart applications, devices and systems have beendeveloped to monitor the health status of elderly, substitute them in the accomplishment of activities of the daily life (especially in presence of some impairment or disability),alert their caregivers in case of necessity and help them in recognizing risky situations.Such assistive technologies basically rely on the communication and interaction be-tween body sensors, smart environments and smart devices. However, in such contextless effort has been spent in designing smart solutions for empowering and supportingthe self-efficacy of people with neurodegenerative diseases and elderly in general. Thisthesis fills in the gap by presenting a low-cost, non intrusive, and ubiquitous VirtualCoaching System (VCS) to support people in the acquisition of new behaviors (e.g.,taking pills, drinking water, finding the right key, avoiding motor blocks) necessary tocope with needs derived from a change in their health status and a degradation of theircognitive capabilities as they age. VCS is based on the concept of extended mind intro-duced by Clark and Chalmers in 1998. They proposed the idea that objects within theenvironment function as a part of the mind. In my revisiting of the concept of extendedmind, the VCS is composed of a set of smart objects that exploit the Internet of Things(IoT) technology and machine learning-based algorithms, in order to identify the needsof the users and react accordingly. In particular, the system exploits smart tags to trans-form objects commonly used by people (e.g., pillbox, bottle of water, keys) into smartobjects, it monitors their usage according to their needs, and it incrementally guidesthem in the acquisition of new behaviors related to their needs. To implement VCS, thisthesis explores different research directions and challenges. First of all, it addresses thedefinition of a ubiquitous, non-invasive and low-cost indoor monitoring architecture byexploiting the IoT paradigm. Secondly, it deals with the necessity of developing solu-tions for implementing coaching actions and consequently monitoring human activitiesby analyzing the interaction between people and smart objects. Finally, it focuses on the design of low-cost localization systems for indoor environment, since knowing theposition of a person provides VCS with essential information to acquire information onperformed activities and to prevent risky situations. In the end, the outcomes of theseresearch directions have been integrated into a healthcare application scenario to imple-ment a wearable system that prevents freezing of gait in people affected by Parkinson\u2019sDisease
    corecore