211 research outputs found

    Fully Automatic and Real-Time Catheter Segmentation in X-Ray Fluoroscopy

    Full text link
    Augmenting X-ray imaging with 3D roadmap to improve guidance is a common strategy. Such approaches benefit from automated analysis of the X-ray images, such as the automatic detection and tracking of instruments. In this paper, we propose a real-time method to segment the catheter and guidewire in 2D X-ray fluoroscopic sequences. The method is based on deep convolutional neural networks. The network takes as input the current image and the three previous ones, and segments the catheter and guidewire in the current image. Subsequently, a centerline model of the catheter is constructed from the segmented image. A small set of annotated data combined with data augmentation is used to train the network. We trained the method on images from 182 X-ray sequences from 23 different interventions. On a testing set with images of 55 X-ray sequences from 5 other interventions, a median centerline distance error of 0.2 mm and a median tip distance error of 0.9 mm was obtained. The segmentation of the instruments in 2D X-ray sequences is performed in a real-time fully-automatic manner.Comment: Accepted to MICCAI 201

    Fast catheter segmentation and tracking based on x-ray fluoroscopic and echocardiographic modalities for catheter-based cardiac minimally invasive interventions

    Get PDF
    X-ray fluoroscopy and echocardiography imaging (ultrasound, US) are two imaging modalities that are widely used in cardiac catheterization. For these modalities, a fast, accurate and stable algorithm for the detection and tracking of catheters is required to allow clinicians to observe the catheter location in real-time. Currently X-ray fluoroscopy is routinely used as the standard modality in catheter ablation interventions. However, it lacks the ability to visualize soft tissue and uses harmful radiation. US does not have these limitations but often contains acoustic artifacts and has a small field of view. These make the detection and tracking of the catheter in US very challenging. The first contribution in this thesis is a framework which combines Kalman filter and discrete optimization for multiple catheter segmentation and tracking in X-ray images. Kalman filter is used to identify the whole catheter from a single point detected on the catheter in the first frame of a sequence of x-ray images. An energy-based formulation is developed that can be used to track the catheters in the following frames. We also propose a discrete optimization for minimizing the energy function in each frame of the X-ray image sequence. Our approach is robust to tangential motion of the catheter and combines the tubular and salient feature measurements into a single robust and efficient framework. The second contribution is an algorithm for catheter extraction in 3D ultrasound images based on (a) the registration between the X-ray and ultrasound images and (b) the segmentation of the catheter in X-ray images. The search space for the catheter extraction in the ultrasound images is constrained to lie on or close to a curved surface in the ultrasound volume. The curved surface corresponds to the back-projection of the extracted catheter from the X-ray image to the ultrasound volume. Blob-like features are detected in the US images and organized in a graphical model. The extracted catheter is modelled as the optimal path in this graphical model. Both contributions allow the use of ultrasound imaging for the improved visualization of soft tissue. However, X-ray imaging is still required for each ultrasound frame and the amount of X-ray exposure has not been reduced. The final contribution in this thesis is a system that can track the catheter in ultrasound volumes automatically without the need for X-ray imaging during the tracking. Instead X-ray imaging is only required for the system initialization and for recovery from tracking failures. This allows a significant reduction in the amount of X-ray exposure for patient and clinicians.Open Acces

    Continuous roadmapping in liver TACE procedures using 2D–3D catheter-based registration

    Get PDF
    PURPOSE: Fusion of pre/perioperative images and intra-operative images may add relevant information during image-guided procedures. In abdominal procedures, respiratory motion changes the position of organs, and thus accurate image guidance requires a continuous update of the spatial alignment of the (pre/perioperative) information with the organ position during the intervention. METHODS: In this paper, we propose a method to register in real time perioperative 3D rotational angiography images (3DRA) to intra-operative single-plane 2D fluoroscopic images for improved guidance in TACE interventions. The method uses the shape of 3D vessels extracted from the 3DRA and the 2D catheter shape extracted from fluoroscopy. First, the appropriate 3D vessel is selected from the complete vascular tree using a shape similarity metric. Subsequently, the catheter is registered to this vessel, and the 3DRA is visualized based on the registration results. The method is evaluated on simulated data and clinical data. RESULTS: The first selected vessel, ranked with the shape similarity metric, is used more than 39 % in the final registration and the second more than 21 %. The median of the closest corresponding points distance between 2D angiography vessels and projected 3D vessels is 4.7–5.4 mm when using the brute force optimizer and 5.2–6.6 mm when using the Powell optimizer. CONCLUSION: We present a catheter-based registration method to continuously fuse a 3DRA roadmap arterial tree onto 2D fluoroscopic images with an efficient shape similarity

    Development of a Surgical Assistance System for Guiding Transcatheter Aortic Valve Implantation

    Get PDF
    Development of image-guided interventional systems is growing up rapidly in the recent years. These new systems become an essential part of the modern minimally invasive surgical procedures, especially for the cardiac surgery. Transcatheter aortic valve implantation (TAVI) is a recently developed surgical technique to treat severe aortic valve stenosis in elderly and high-risk patients. The placement of stented aortic valve prosthesis is crucial and typically performed under live 2D fluoroscopy guidance. To assist the placement of the prosthesis during the surgical procedure, a new fluoroscopy-based TAVI assistance system has been developed. The developed assistance system integrates a 3D geometrical aortic mesh model and anatomical valve landmarks with live 2D fluoroscopic images. The 3D aortic mesh model and landmarks are reconstructed from interventional angiographic and fluoroscopic C-arm CT system, and a target area of valve implantation is automatically estimated using these aortic mesh models. Based on template-based tracking approach, the overlay of visualized 3D aortic mesh model, landmarks and target area of implantation onto fluoroscopic images is updated by approximating the aortic root motion from a pigtail catheter motion without contrast agent. A rigid intensity-based registration method is also used to track continuously the aortic root motion in the presence of contrast agent. Moreover, the aortic valve prosthesis is tracked in fluoroscopic images to guide the surgeon to perform the appropriate placement of prosthesis into the estimated target area of implantation. An interactive graphical user interface for the surgeon is developed to initialize the system algorithms, control the visualization view of the guidance results, and correct manually overlay errors if needed. Retrospective experiments were carried out on several patient datasets from the clinical routine of the TAVI in a hybrid operating room. The maximum displacement errors were small for both the dynamic overlay of aortic mesh models and tracking the prosthesis, and within the clinically accepted ranges. High success rates of the developed assistance system were obtained for all tested patient datasets. The results show that the developed surgical assistance system provides a helpful tool for the surgeon by automatically defining the desired placement position of the prosthesis during the surgical procedure of the TAVI.Die Entwicklung bildgeführter interventioneller Systeme wächst rasant in den letzten Jahren. Diese neuen Systeme werden zunehmend ein wesentlicher Bestandteil der technischen Ausstattung bei modernen minimal-invasiven chirurgischen Eingriffen. Diese Entwicklung gilt besonders für die Herzchirurgie. Transkatheter Aortenklappen-Implantation (TAKI) ist eine neue entwickelte Operationstechnik zur Behandlung der schweren Aortenklappen-Stenose bei alten und Hochrisiko-Patienten. Die Platzierung der Aortenklappenprothese ist entscheidend und wird in der Regel unter live-2D-fluoroskopischen Bildgebung durchgeführt. Zur Unterstützung der Platzierung der Prothese während des chirurgischen Eingriffs wurde in dieser Arbeit ein neues Fluoroskopie-basiertes TAKI Assistenzsystem entwickelt. Das entwickelte Assistenzsystem überlagert eine 3D-Geometrie des Aorten-Netzmodells und anatomischen Landmarken auf live-2D-fluoroskopische Bilder. Das 3D-Aorten-Netzmodell und die Landmarken werden auf Basis der interventionellen Angiographie und Fluoroskopie mittels eines C-Arm-CT-Systems rekonstruiert. Unter Verwendung dieser Aorten-Netzmodelle wird das Zielgebiet der Klappen-Implantation automatisch geschätzt. Mit Hilfe eines auf Template Matching basierenden Tracking-Ansatzes wird die Überlagerung des visualisierten 3D-Aorten-Netzmodells, der berechneten Landmarken und der Zielbereich der Implantation auf fluoroskopischen Bildern korrekt überlagert. Eine kompensation der Aortenwurzelbewegung erfolgt durch Bewegungsverfolgung eines Pigtail-Katheters in Bildsequenzen ohne Kontrastmittel. Eine starrere Intensitätsbasierte Registrierungsmethode wurde verwendet, um kontinuierlich die Aortenwurzelbewegung in Bildsequenzen mit Kontrastmittelgabe zu detektieren. Die Aortenklappenprothese wird in die fluoroskopischen Bilder eingeblendet und dient dem Chirurg als Leitfaden für die richtige Platzierung der realen Prothese. Eine interaktive Benutzerschnittstelle für den Chirurg wurde zur Initialisierung der Systemsalgorithmen, zur Steuerung der Visualisierung und für manuelle Korrektur eventueller Überlagerungsfehler entwickelt. Retrospektive Experimente wurden an mehreren Patienten-Datensätze aus der klinischen Routine der TAKI in einem Hybrid-OP durchgeführt. Hohe Erfolgsraten des entwickelten Assistenzsystems wurden für alle getesteten Patienten-Datensätze erzielt. Die Ergebnisse zeigen, dass das entwickelte chirurgische Assistenzsystem ein hilfreiches Werkzeug für den Chirurg bei der Platzierung Position der Prothese während des chirurgischen Eingriffs der TAKI bietet

    Atrial Septal Defect

    Get PDF
    Atrial Septal Defects (ASDs) are relatively common both in children and adults. Recent reports of increase in the prevalence of ASD may be related use of color Doppler echocardiography. The etiology of the ASD is largely unknown. While the majority of the book addresses closure of ASDs, one chapter in particular focuses on creating atrial defects in the fetus with hypoplastic left heart syndrome. This book, I hope, will give the needed knowledge to the physician caring for infants, children, adults and elderly with ASD which may help them provide best possible care for their patients

    Dynamic Analysis of X-ray Angiography for Image-Guided Coronary Interventions

    Get PDF
    Percutaneous coronary intervention (PCI) is a minimally-invasive procedure for treating patients with coronary artery disease. PCI is typically performed with image guidance using X-ray angiograms (XA) in which coronary arter

    Improved Image Guidance in TACE Procedures

    Get PDF
    Purpose of the work in this thesis is to improve the image guidance in TACE procedures. More specifically, we intend to develop and evaluate technology that permits dynamic roadmapping based on a 3D model of the liver vasculature

    Fusion of interventional ultrasound & X-ray

    Get PDF
    In einer immer älter werdenden Bevölkerung wird die Behandlung von strukturellen Herzkrankheiten zunehmend wichtiger. Verbesserte medizinische Bildgebung und die Einführung neuer Kathetertechnologien führten dazu, dass immer mehr herkömmliche chirurgische Eingriffe am offenen Herzen durch minimal invasive Methoden abgelöst werden. Diese modernen Interventionen müssen durch verschiedenste Bildgebungsverfahren navigiert werden. Hierzu werden hauptsächlich Röntgenfluoroskopie und transösophageale Echokardiografie (TEE) eingesetzt. Röntgen bietet eine gute Visualisierung der eingeführten Katheter, was essentiell für eine gute Navigation ist. TEE hingegen bietet die Möglichkeit der Weichteilgewebedarstellung und kann damit vor allem zur Darstellung von anatomischen Strukturen, wie z.B. Herzklappen, genutzt werden. Beide Modalitäten erzeugen Bilder in Echtzeit und werden für die erfolgreiche Durchführung minimal invasiver Herzchirurgie zwingend benötigt. Üblicherweise sind beide Systeme eigenständig und nicht miteinander verbunden. Es ist anzunehmen, dass eine Bildfusion beider Welten einen großen Vorteil für die behandelnden Operateure erzeugen kann, vor allem eine verbesserte Kommunikation im Behandlungsteam. Ebenso können sich aus der Anwendung heraus neue chirurgische Worfklows ergeben. Eine direkte Fusion beider Systeme scheint nicht möglich, da die Bilddaten eine zu unterschiedliche Charakteristik aufweisen. Daher kommt in dieser Arbeit eine indirekte Registriermethode zum Einsatz. Die TEE-Sonde ist während der Intervention ständig im Fluoroskopiebild sichtbar. Dadurch wird es möglich, die Sonde im Röntgenbild zu registrieren und daraus die 3D Position abzuleiten. Der Zusammenhang zwischen Ultraschallbild und Ultraschallsonde wird durch eine Kalibrierung bestimmt. In dieser Arbeit wurde die Methode der 2D-3D Registrierung gewählt, um die TEE Sonde auf 2D Röntgenbildern zu erkennen. Es werden verschiedene Beiträge präsentiert, welche einen herkömmlichen 2D-3D Registrieralgorithmus verbessern. Nicht nur im Bereich der Ultraschall-Röntgen-Fusion, sondern auch im Hinblick auf allgemeine Registrierprobleme. Eine eingeführte Methode ist die der planaren Parameter. Diese verbessert die Robustheit und die Registriergeschwindigkeit, vor allem während der Registrierung eines Objekts aus zwei nicht-orthogonalen Richtungen. Ein weiterer Ansatz ist der Austausch der herkömmlichen Erzeugung von sogenannten digital reconstructed radiographs. Diese sind zwar ein integraler Bestandteil einer 2D-3D Registrierung aber gleichzeitig sehr zeitaufwendig zu berechnen. Es führt zu einem erheblichen Geschwindigkeitsgewinn die herkömmliche Methode durch schnelles Rendering von Dreiecksnetzen zu ersetzen. Ebenso wird gezeigt, dass eine Kombination von schnellen lernbasierten Detektionsalgorithmen und 2D-3D Registrierung die Genauigkeit und die Registrierreichweite verbessert. Zum Abschluss werden die ersten Ergebnisse eines klinischen Prototypen präsentiert, welcher die zuvor genannten Methoden verwendet.Today, in an elderly community, the treatment of structural heart disease will become more and more important. Constant improvements of medical imaging technologies and the introduction of new catheter devices caused the trend to replace conventional open heart surgery by minimal invasive interventions. These advanced interventions need to be guided by different medical imaging modalities. The two main imaging systems here are X-ray fluoroscopy and Transesophageal  Echocardiography (TEE). While X-ray provides a good visualization of inserted catheters, which is essential for catheter navigation, TEE can display soft tissues, especially anatomical structures like heart valves. Both modalities provide real-time imaging and are necessary to lead minimal invasive heart surgery to success. Usually, the two systems are detached and not connected. It is conceivable that a fusion of both worlds can create a strong benefit for the physicians. It can lead to a better communication within the clinical team and can probably enable new surgical workflows. Because of the completely different characteristics of the image data, a direct fusion seems to be impossible. Therefore, an indirect registration of Ultrasound and X-ray images is used. The TEE probe is usually visible in the X-ray image during the described minimal-invasive interventions. Thereby, it becomes possible to register the TEE probe in the fluoroscopic images and to establish its 3D position. The relationship of the Ultrasound image to the Ultrasound probe is known by calibration. To register the TEE probe on 2D X-ray images, a 2D-3D registration approach is chosen in this thesis. Several contributions are presented, which are improving the common 2D-3D registration algorithm for the task of Ultrasound and X-ray fusion, but also for general 2D-3D registration problems. One presented approach is the introduction of planar parameters that increase robustness and speed during the registration of an object on two non-orthogonal views. Another approach is to replace the conventional generation of digital reconstructedradiographs, which is an integral part of 2D-3D registration but also a performance bottleneck, with fast triangular mesh rendering. This will result in a significant performance speed-up. It is also shown that a combination of fast learning-based detection algorithms with 2D-3D registration will increase the accuracy and the capture range, instead of employing them solely to the  registration/detection of a TEE probe. Finally, a first clinical prototype is presented which employs the presented approaches and first clinical results are shown
    corecore