12,273 research outputs found

    A multi-modal dance corpus for research into real-time interaction between humans in online virtual environments

    Get PDF
    We present a new, freely available, multimodal corpus for research into, amongst other areas, real-time realistic interaction between humans in online virtual environments. The specific corpus scenario focuses on an online dance class application scenario where students, with avatars driven by whatever 3D capture technology are locally available to them, can learn choerographies with teacher guidance in an online virtual ballet studio. As the data corpus is focused on this scenario, it consists of student/teacher dance choreographies concurrently captured at two different sites using a variety of media modalities, including synchronised audio rigs, multiple cameras, wearable inertial measurement devices and depth sensors. In the corpus, each of the several dancers perform a number of fixed choreographies, which are both graded according to a number of specific evaluation criteria. In addition, ground-truth dance choreography annotations are provided. Furthermore, for unsynchronised sensor modalities, the corpus also includes distinctive events for data stream synchronisation. Although the data corpus is tailored specifically for an online dance class application scenario, the data is free to download and used for any research and development purposes

    Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed Scenarios

    Full text link
    Event cameras are bio-inspired vision sensors that output pixel-level brightness changes instead of standard intensity frames. These cameras do not suffer from motion blur and have a very high dynamic range, which enables them to provide reliable visual information during high speed motions or in scenes characterized by high dynamic range. However, event cameras output only little information when the amount of motion is limited, such as in the case of almost still motion. Conversely, standard cameras provide instant and rich information about the environment most of the time (in low-speed and good lighting scenarios), but they fail severely in case of fast motions, or difficult lighting such as high dynamic range or low light scenes. In this paper, we present the first state estimation pipeline that leverages the complementary advantages of these two sensors by fusing in a tightly-coupled manner events, standard frames, and inertial measurements. We show on the publicly available Event Camera Dataset that our hybrid pipeline leads to an accuracy improvement of 130% over event-only pipelines, and 85% over standard-frames-only visual-inertial systems, while still being computationally tractable. Furthermore, we use our pipeline to demonstrate - to the best of our knowledge - the first autonomous quadrotor flight using an event camera for state estimation, unlocking flight scenarios that were not reachable with traditional visual-inertial odometry, such as low-light environments and high-dynamic range scenes.Comment: 8 pages, 9 figures, 2 table

    Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs

    Full text link
    We address the problem of making human motion capture in the wild more practical by using a small set of inertial sensors attached to the body. Since the problem is heavily under-constrained, previous methods either use a large number of sensors, which is intrusive, or they require additional video input. We take a different approach and constrain the problem by: (i) making use of a realistic statistical body model that includes anthropometric constraints and (ii) using a joint optimization framework to fit the model to orientation and acceleration measurements over multiple frames. The resulting tracker Sparse Inertial Poser (SIP) enables 3D human pose estimation using only 6 sensors (attached to the wrists, lower legs, back and head) and works for arbitrary human motions. Experiments on the recently released TNT15 dataset show that, using the same number of sensors, SIP achieves higher accuracy than the dataset baseline without using any video data. We further demonstrate the effectiveness of SIP on newly recorded challenging motions in outdoor scenarios such as climbing or jumping over a wall.Comment: 12 pages, Accepted at Eurographics 201

    FlightGoggles: A Modular Framework for Photorealistic Camera, Exteroceptive Sensor, and Dynamics Simulation

    Full text link
    FlightGoggles is a photorealistic sensor simulator for perception-driven robotic vehicles. The key contributions of FlightGoggles are twofold. First, FlightGoggles provides photorealistic exteroceptive sensor simulation using graphics assets generated with photogrammetry. Second, it provides the ability to combine (i) synthetic exteroceptive measurements generated in silico in real time and (ii) vehicle dynamics and proprioceptive measurements generated in motio by vehicle(s) in a motion-capture facility. FlightGoggles is capable of simulating a virtual-reality environment around autonomous vehicle(s). While a vehicle is in flight in the FlightGoggles virtual reality environment, exteroceptive sensors are rendered synthetically in real time while all complex extrinsic dynamics are generated organically through the natural interactions of the vehicle. The FlightGoggles framework allows for researchers to accelerate development by circumventing the need to estimate complex and hard-to-model interactions such as aerodynamics, motor mechanics, battery electrochemistry, and behavior of other agents. The ability to perform vehicle-in-the-loop experiments with photorealistic exteroceptive sensor simulation facilitates novel research directions involving, e.g., fast and agile autonomous flight in obstacle-rich environments, safe human interaction, and flexible sensor selection. FlightGoggles has been utilized as the main test for selecting nine teams that will advance in the AlphaPilot autonomous drone racing challenge. We survey approaches and results from the top AlphaPilot teams, which may be of independent interest.Comment: Initial version appeared at IROS 2019. Supplementary material can be found at https://flightgoggles.mit.edu. Revision includes description of new FlightGoggles features, such as a photogrammetric model of the MIT Stata Center, new rendering settings, and a Python AP

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms
    corecore