7,002 research outputs found

    Real-time beat-synchronous audio effects

    Full text link

    Performance Following: Real-Time Prediction of Musical Sequences Without a Score

    Get PDF
    (c)2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Final Research Report for Sound Design and Audio Player

    Get PDF
    This deliverable describes the work on Task 4.3 Algorithms for sound design and feature developments for audio player. The audio player runs on the in-store player (ISP) and takes care of rendering the music playlists via beat-synchronous automatic DJ mixing, taking advantage of the rich musical content description extracted in T4.2 (beat markers, structural segmentation into intro and outro, musical and sound content classification). The deliverable covers prototypes and final results on: (1) automatic beat-synchronous mixing by beat alignment and time stretching – we developed an algorithm for beat alignment and scheduling of time-stretched tracks; (2) compensation of play duration changes introduced by time stretching – in order to make the playlist generator independent of beat mixing, we chose to readjust the tempo of played tracks such that their stretched duration is the same as their original duration; (3) prospective research on the extraction of data from DJ mixes – to alleviate the lack of extensive ground truth databases of DJ mixing practices, we propose steps towards extracting this data from existing mixes by alignment and unmixing of the tracks in a mix. We also show how these methods can be evaluated even without labelled test data, and propose an open dataset for further research; (4) a description of the software player module, a GUI-less application to run on the ISP that performs streaming of tracks from disk and beat-synchronous mixing. The estimation of cue points where tracks should cross-fade is now described in D4.7 Final Research Report on Auto-Tagging of Music.EC/H2020/688122/EU/Artist-to-Business-to-Business-to-Consumer Audio Branding System/ABC D

    Musicians and Machines: Bridging the Semantic Gap In Live Performance

    Get PDF
    PhDThis thesis explores the automatic extraction of musical information from live performances – with the intention of using that information to create novel, responsive and adaptive performance tools for musicians. We focus specifically on two forms of musical analysis – harmonic analysis and beat tracking. We present two harmonic analysis algorithms – specifically we present a novel chroma vector analysis technique which we later use as the input for a chord recognition algorithm. We also present a real-time beat tracker, based upon an extension of state of the art non-causal models, that is computationally efficient and capable of strong performance compared to other models. Furthermore, through a modular study of several beat tracking algorithms we attempt to establish methods to improve beat tracking and apply these lessons to our model. Building upon this work, we show that these analyses can be combined to create a beat-synchronous musical representation, with harmonic information segmented at the level of the beat. We present a number of ways of calculating these representations and discuss their relative merits. We proceed by introducing a technique, which we call Performance Following, for recognising repeated patterns in live musical performances. Through examining the real-time beat-synchronous musical representation, this technique makes predictions of future harmonic content in musical performances with no prior knowledge in the form of a score. Finally, we present a number of potential applications for live performances that incorporate the real-time musical analysis techniques outlined previously. The applications presented include audio effects informed by beat tracking, a technique for synchronising video to a live performance, the use of harmonic information to control visual displays and an automatic accompaniment system based upon our performance following technique.EPSR

    Reliability-Informed Beat Tracking of Musical Signals

    Get PDF
    Abstract—A new probabilistic framework for beat tracking of musical audio is presented. The method estimates the time between consecutive beat events and exploits both beat and non-beat information by explicitly modeling non-beat states. In addition to the beat times, a measure of the expected accuracy of the estimated beats is provided. The quality of the observations used for beat tracking is measured and the reliability of the beats is automatically calculated. A k-nearest neighbor regression algorithm is proposed to predict the accuracy of the beat estimates. The performance of the beat tracking system is statistically evaluated using a database of 222 musical signals of various genres. We show that modeling non-beat states leads to a significant increase in performance. In addition, a large experiment where the parameters of the model are automatically learned has been completed. Results show that simple approximations for the parameters of the model can be used. Furthermore, the performance of the system is compared with existing algorithms. Finally, a new perspective for beat tracking evaluation is presented. We show how reliability information can be successfully used to increase the mean performance of the proposed algorithm and discuss how far automatic beat tracking is from human tapping. Index Terms—Beat-tracking, beat quality, beat-tracking reliability, k-nearest neighbor (k-NN) regression, music signal processing. I

    Ergogenic effect of music during running performance

    Get PDF
    In running competitions portable music players and headphones are often banned. In some cases, runners have been disqualified after using such devices during competition. In this paper, it is discussed whether, aside from possible safety reasons, such competition regulations make sense and whether music can have an ergogenic effect on performance. Although a definitive conclusion on the regulation matter is not of our concern here, we review evidence of the fact that music is capable of enhancing performance in running and a range of different sports, predominantly for short duration exercise with low-to-medium intensity. The use of music players can be beneficial for training. However, it is reasonable to avoid these devices and headphones in case of championships for professional athletes
    corecore