2,359 research outputs found

    Redefining A in RGBA: Towards a Standard for Graphical 3D Printing

    Full text link
    Advances in multimaterial 3D printing have the potential to reproduce various visual appearance attributes of an object in addition to its shape. Since many existing 3D file formats encode color and translucency by RGBA textures mapped to 3D shapes, RGBA information is particularly important for practical applications. In contrast to color (encoded by RGB), which is specified by the object's reflectance, selected viewing conditions and a standard observer, translucency (encoded by A) is neither linked to any measurable physical nor perceptual quantity. Thus, reproducing translucency encoded by A is open for interpretation. In this paper, we propose a rigorous definition for A suitable for use in graphical 3D printing, which is independent of the 3D printing hardware and software, and which links both optical material properties and perceptual uniformity for human observers. By deriving our definition from the absorption and scattering coefficients of virtual homogeneous reference materials with an isotropic phase function, we achieve two important properties. First, a simple adjustment of A is possible, which preserves the translucency appearance if an object is re-scaled for printing. Second, determining the value of A for a real (potentially non-homogeneous) material, can be achieved by minimizing a distance function between light transport measurements of this material and simulated measurements of the reference materials. Such measurements can be conducted by commercial spectrophotometers used in graphic arts. Finally, we conduct visual experiments employing the method of constant stimuli, and derive from them an embedding of A into a nearly perceptually uniform scale of translucency for the reference materials.Comment: 20 pages (incl. appendices), 20 figures. Version with higher quality images: https://cloud-ext.igd.fraunhofer.de/s/pAMH67XjstaNcrF (main article) and https://cloud-ext.igd.fraunhofer.de/s/4rR5bH3FMfNsS5q (appendix). Supplemental material including code: https://cloud-ext.igd.fraunhofer.de/s/9BrZaj5Uh5d0cOU/downloa

    Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials

    Full text link
    Accurate color reproduction is important in many applications of 3D printing, from design prototypes to 3D color copies or portraits. Although full color is available via other technologies, multi-jet printers have greater potential for graphical 3D printing, in terms of reproducing complex appearance properties. However, to date these printers cannot produce full color, and doing so poses substantial technical challenges, from the shear amount of data to the translucency of the available color materials. In this paper, we propose an error diffusion halftoning approach to achieve full color with multi-jet printers, which operates on multiple isosurfaces or layers within the object. We propose a novel traversal algorithm for voxel surfaces, which allows the transfer of existing error diffusion algorithms from 2D printing. The resulting prints faithfully reproduce colors, color gradients and fine-scale details.Comment: 15 pages, 14 figures; includes supplemental figure

    Compression, Modeling, and Real-Time Rendering of Realistic Materials and Objects

    Get PDF
    The realism of a scene basically depends on the quality of the geometry, the illumination and the materials that are used. Whereas many sources for the creation of three-dimensional geometry exist and numerous algorithms for the approximation of global illumination were presented, the acquisition and rendering of realistic materials remains a challenging problem. Realistic materials are very important in computer graphics, because they describe the reflectance properties of surfaces, which are based on the interaction of light and matter. In the real world, an enormous diversity of materials can be found, comprising very different properties. One important objective in computer graphics is to understand these processes, to formalize them and to finally simulate them. For this purpose various analytical models do already exist, but their parameterization remains difficult as the number of parameters is usually very high. Also, they fail for very complex materials that occur in the real world. Measured materials, on the other hand, are prone to long acquisition time and to huge input data size. Although very efficient statistical compression algorithms were presented, most of them do not allow for editability, such as altering the diffuse color or mesostructure. In this thesis, a material representation is introduced that makes it possible to edit these features. This makes it possible to re-use the acquisition results in order to easily and quickly create deviations of the original material. These deviations may be subtle, but also substantial, allowing for a wide spectrum of material appearances. The approach presented in this thesis is not based on compression, but on a decomposition of the surface into several materials with different reflection properties. Based on a microfacette model, the light-matter interaction is represented by a function that can be stored in an ordinary two-dimensional texture. Additionally, depth information, local rotations, and the diffuse color are stored in these textures. As a result of the decomposition, some of the original information is inevitably lost, therefore an algorithm for the efficient simulation of subsurface scattering is presented as well. Another contribution of this work is a novel perception-based simplification metric that includes the material of an object. This metric comprises features of the human visual system, for example trichromatic color perception or reduced resolution. The proposed metric allows for a more aggressive simplification in regions where geometric metrics do not simplif

    BSSRDF estimation from single images

    Get PDF
    We present a novel method to estimate an approximation of the reflectance characteristics of optically thick, homogeneous translucent materials using only a single photograph as input. First, we approximate the diffusion profile as a linear combination of piecewise constant functions, an approach that enables a linear system minimization and maximizes robustness in the presence of suboptimal input data inferred from the image. We then fit to a smoother monotonically decreasing model, ensuring continuity on its first derivative. We show the feasibility of our approach and validate it in controlled environments, comparing well against physical measurements from previous works. Next, we explore the performance of our method in uncontrolled scenarios, where neither lighting nor geometry are known. We show that these can be roughly approximated from the corresponding image by making two simple assumptions: that the object is lit by a distant light source and that it is globally convex, allowing us to capture the visual appearance of the photographed material. Compared with previous works, our technique offers an attractive balance between visual accuracy and ease of use, allowing its use in a wide range of scenarios including off-the-shelf, single images, thus extending the current repertoire of real-world data acquisition techniques

    Separable Subsurface Scattering

    Get PDF
    In this paper, we propose two real-time models for simulating subsurface scattering for a large variety of translucent materials, which need under 0.5 ms per frame to execute. This makes them a practical option for real-time production scenarios. Current state-of-the-art, real-time approaches simulate subsurface light transport by approximating the radially symmetric non-separable diffusion kernel with a sum of separable Gaussians, which requires multiple (up to 12) 1D convolutions. In this work we relax the requirement of radial symmetry to approximate a 2D diffuse reflectance profile by a single separable kernel. We first show that low-rank approximations based on matrix factorization outperform previous approaches, but they still need several passes to get good results. To solve this, we present two different separable models: the first one yields a high-quality diffusion simulation, while the second one offers an attractive trade-off between physical accuracy and artistic control. Both allow rendering of subsurface scattering using only two 1D convolutions, reducing both execution time and memory consumption, while delivering results comparable to techniques with higher cost. Using our importance-sampling and jittering strategies, only seven samples per pixel are required. Our methods can be implemented as simple post-processing steps without intrusive changes to existing rendering pipelines

    Lightweight Face Relighting

    Get PDF
    In this paper we present a method to relight human faces in real time, using consumer-grade graphics cards even with limited 3D capabilities. We show how to render faces using a combination of a simple, hardware-accelerated parametric model simulating skin shading and a detail texture map, and provide robust procedures to estimate all the necessary parameters for a given face. Our model strikes a balance between the difficulty of realistic face rendering (given the very specific reflectance properties of skin) and the goal of real-time rendering with limited hardware capabilities. This is accomplished by automatically generating an optimal set of parameters for a simple rendering model. We offer a discussion of the issues in face rendering to discern the pros and cons of various rendering models and to generalize our approach to most of the current hardware constraints. We provide results demonstrating the usability of our approach and the improvements we introduce both in the performance and in the visual quality of the resulting faces

    Photorealistic physically based render engines: a comparative study

    Full text link
    PĂ©rez Roig, F. (2012). Photorealistic physically based render engines: a comparative study. http://hdl.handle.net/10251/14797.Archivo delegad

    Interactive translucent volume rendering and procedural modeling

    Get PDF
    Journal ArticleDirect volume rendering is a commonly used technique in visualization applications. Many of these applications require sophisticated shading models to capture subtle lighting effects and characteristics of volume metric data and materials. Many common objects and natural phenomena exhibit visual quality that cannot be captured using simple lighting models or cannot be solved at interactive rates using more sophisticated methods. We present a simple yet effective interactive shading model which captures volumetric light attenuation effects to produce volumetric shadows and the subtle appearance of translucency. We also present a technique for volume displacement or perturbation that allows realistic interactive modeling of high frequency detail for real and synthetic volumetric data
    • …
    corecore