52 research outputs found

    Performance Analysis of Multi-Service DS-CDMA Cellular Networks with Soft Handoff

    Get PDF
    DS-CDMA networks are fast evolving from voice only networks to multi-service networks. A key requirement for next generation networks is the ability to support a heterogeneous mix of services with varying traffic characteristics. Many papers assumed fixed capacities in their analysis which is applicable to FDMA and TDMA. Only recently have papers in the literature begun to analyze the effect of soft capacity and soft handoff on network performance. To the author\u27s best knowledge, there is none that analyzes the impact of soft handoff on multi-service DS-CDMA cellular networks. This thesis delineates the impact of soft handoff and user mobility on QoS parameters of multi-service DS-CDMA networks. The main contribution of this thesis is analytical model that includes soft handoff while supporting voice and video with user mobility taken into account. System performance parameters such as call blocking probability and call dropping probability are analytically determined using Markov Chain Analysis

    Soft Handoff in MC-CDMA Cellular Networks Supporting Multimedia Services

    Get PDF
    An adaptive resource reservation and handoff priority scheme, which jointly considers the characteristics from the physical, link and network layers, is proposed for a packet switching Multicode (MC)-CDMA cellular network supporting multimedia applications. A call admission region is derived for call admission control (CAC) and handoff management with the satisfaction of quality of service (QoS) requirements for all kinds of multimedia traffic, where the QoS parameters include the wireless transmission bit error rate (BER), the packet loss rate (PLR) and delay requirement. The BER requirement is guaranteed by properly arranging simultaneous packet transmissions, whereas the PLR and delay requirements are guaranteed by the proposed packet scheduling and partial packet integration scheme. To give service priority to handoff calls, a threshold-based adaptive resource reservation scheme is proposed on the basis of a practical user mobility model and a proper handoff request prediction scheme. The resource reservation scheme gives handoff calls a higher admission priority over new calls, and is designed to adjust the reservation-request time threshold adaptively according to the varying traffic load. The individual reservation requests form a common reservation pool, and handoff calls are served on a first-come-first-serve basis. By exploiting the transmission rate adaptability of video calls to the available radio resources, the resources freed from rate-adaptive high-quality video calls by service degradation can be further used to prioritize handoff calls. With the proposed resource reservation and handoff priority scheme, the dynamic properties of the system can be closely captured and a better grade of service (GoS) in terms of new call blocking and handoff call dropping probabilities(rates) can be achieved compared to other schemes in literature. Numerical results are presented to show the improvement of the GoS performance and the efficient utilization of the radio resources

    4. generációs mobil rendszerek kutatása = Research on 4-th Generation Mobile Systems

    Get PDF
    A 3G mobil rendszerek szabványosítása a végéhez közeledik, legalábbis a meghatározó képességek tekintetében. Ezért létfontosságú azon technikák, eljárások vizsgálata, melyek a következő, 4G rendszerekben meghatározó szerepet töltenek majd be. Több ilyen kutatási irányvonal is létezik, ezek közül projektünkben a fontosabbakra koncentráltunk. A következőben felsoroljuk a kutatott területeket, és röviden összegezzük az elért eredményeket. Szórt spektrumú rendszerek Kifejlesztettünk egy új, rádiós interfészen alkalmazható hívásengedélyezési eljárást. Szimulációs vizsgálatokkal támasztottuk alá a megoldás hatékonyságát. A projektben kutatóként résztvevő Jeney Gábor sikeresen megvédte Ph.D. disszertációját neurális hálózatokra épülő többfelhasználós detekciós technikák témában. Az elért eredmények Imre Sándor MTA doktori disszertációjába is beépültek. IP alkalmazása mobil rendszerekben Továbbfejlesztettük, teszteltük és általánosítottuk a projekt keretében megalkotott új, gyűrű alapú topológiára épülő, a jelenleginél nagyobb megbízhatóságú IP alapú hozzáférési koncepciót. A témakörben Szalay Máté Ph.D. disszertációja már a nyilvános védésig jutott. Kvantum-informatikai módszerek alkalmazása 3G/4G detekcióra Új, kvantum-informatikai elvekre épülő többfelhasználós detekciós eljárást dolgoztunk ki. Ehhez új kvantum alapú algoritmusokat is kifejlesztettünk. Az eredményeket nemzetközi folyóiratok mellett egy saját könyvben is publikáltuk. | The project consists of three main research directions. Spread spectrum systems: we developed a new call admission control method for 3G air interfaces. Project member Gabor Jeney obtained the Ph.D. degree and project leader Sandor Imre submitted his DSc theses from this area. Application of IP in mobile systems: A ring-based reliable IP mobility mobile access concept and corresponding protocols have been developed. Project member Máté Szalay submitted his Ph.D. theses from this field. Quantum computing based solutions in 3G/4G detection: Quantum computing based multiuser detection algorithm was developed. Based on the results on this field a book was published at Wiley entitled: 'Quantum Computing and Communications - an engineering approach'

    Resource allocation in cellular CDMA systems with cross- layer Optimization

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Optimization of handover in mobile system by using dynamic guard channel method

    Get PDF
    Handover process is a very essential process in the Global System for Mobile Communication system (GSM). Its study is one of the major key performance indicators in every GSM network, and its linked to the quality of service of an each service provider strives to attain. The failure of the handover process is regarded as the drop of quality of service which in turn dissatisfies the customers. This study, contributes more on improving call drop rate in general, reduce handover failure rate and thus save on upgrade costs, this will be beneficial to GSM service providers to easily optimize their network faults relating to the resource management. In this paper, dynamic guard channel algorithm is presented that was developed using JAVA Software. This algorithm prioritizes the handover calls over the new originated calls. All handover calls are ongoing calls and if they are dropped it causes frustrations. Matlab was used to compare simulated results to the other schemes by use of graphs and charts.  From this paper we were able to establish and come up with a definitive solution to the handover crisis befalling telecommunication companies

    Measurement-based Admission Control for Real-Time Traffic in IEEE 802.16 Wireless Metropolitan Area Network

    Get PDF
    To support real-time applications, we present a Measurement-based Admission Control (MBAC) scheme with Modified Largest Weighted Delay First (M-LWDF) scheduling algorithm. The objective of the admission control scheme is to admit new real-time application call into the system without jeopardizing the maximum average packet delay bound. Measured values of the average packet delay from the network are used for the admission decision. As long as a new call can obtain the requested service and the packet delay of existing calls are not risked by admitting it, the new call will be accepted into the network. In addition, M-LWDF scheduling algorithm is introduced to efficiently allocate network resource. Simulation results show that the proposed MBAC scheme maintains good packet delay bound

    Efficient admission control schemes in cellular IP networks

    Get PDF
    The rapid growth of real-time multimedia applications over IP (Internet Protocol) networks has made the Quality of Service (QoS) a critical issue. One important factor affecting the QoS in the overall IP networks is the admission control in the fast expanding wireless IP networks. Due to the limitations of wireless bandwidth, wireless IP networks (cellular IP networks in particular) are generally considered to be the bottlenecks of the global IP networks. Admission control is to maintain the QoS level for the services admitted. It determines whether to admit or reject a new call request in the mobile cell based on the availability of the bandwidth. In this thesis, the term “call” is for general IP services including voice calls (VoIP) and the term “wireless IP” is used interchangeably with “cellular IP”, which means “cellular or mobile networks supporting IP applications”. In the wireless IP networks, apart from new calls, there are handoff (handover) calls which are calls moving from one cell to another. The general admission control includes the new call admission control and handoff call admission control. The desired admission control schemes should have the QoS maintained in specified levels and network resources (i.e. bandwidth in this case) are utilised efficiently. The study conducted in this thesis is on reviewing current admission control schemes and developing new schemes. Threshold Access Sharing (TAS) scheme is one of the existing schemes with good performance on general call admission. Our work started with enhancing TAS. We have proposed an improved Threshold Access Sharing (iTAS) scheme with the simplified ratebased borrowing which is an adaptive mechanism. The iTAS aims to lower handoff call dropping probability and to maximise the resource utilisation. The scheme works at the cell level (i.e. it is applied at the base station), on the basis of reserving a fixed amount of bandwidth for handoff calls. Prioritised calls can be admitted by “borrowing” bandwidth from other ongoing calls. Our simulation has shown that the new scheme has outperformed the original TAS in terms of handoff prioritisation and handling, especially for bandwidth adaptive calls. However, in iTAS, the admission decision is made solely based on bandwidth related criteria. All calls of same class are assumed having similar behaviour. In the real situation, many factors can be referred in decision making of the admission control, especially the handoff call handling. We have proposed a novice scheme, which considered multiple criteria with different weights. The total weights are used to make a decision for a handoff. These criteria are hard to be modelled in the traditional admission models. Our simulated result has demonstrated that this scheme yields better performance in terms of handoff call xiv dropping compared with iTAS. We further expand the coverage of the admission control from a cell level to a system level in the hierarchical networks. A new admission control model was built, aiming to optimise bandwidth utilisation by separating the signalling channels and traffic channels in different tiers. In the new model, handoff calls are also prioritised using call classification and admission levels. Calls belonging to a certain class follow a pre-defined admission rule. The admission levels can be adjusted to suit the traffic situation in the system. Our simulated results show that this model works better than the normal 2-tier hierarchical networks in terms of handoff calls. The model settings are adjustable to reflect real situation. Finally we conclude our research and suggest some possible future work

    SCHEDULING IN PACKET SWITCHED CELLULAR WIRELESS SYSTEMS

    Get PDF
    In cellular wireless networks where users have independent fading channels, throughput for delay tolerant applications has been greatly increased on the downlink by using opportunistic schedulers at the base station. These schedulers exploit the multiuser diversity inherent in cellular systems. An interesting question is how opportunistic schedulers will provide Quality of Service(QoS) guarantees for a mix of data traffic and traffic from delay-sensitive multimedia applications. In the first part of this dissertation, we completely characterize the scheduled rate, delay and packet service times experienced by mobile users in a packet switched cellular wireless system in terms of a configurable base station scheduler metric. The metric used has a general form, combining an estimate of a mobile user's channel quality with the scheduling delay experienced by the user. In addition to quantifying the scheduler performance, our analysis highlights the inherent trade-off between system throughput and the delay experienced by mobile users with opportunistic scheduling. We also use this analysis to study the effect of prioritized voice users on data users in a cellular wireless system with delay constrained opportunistic scheduling. Our statistical analysis of the forward link is validated by extensive simulations of a system architecture based on the CDMA 1xEV-DO system. The increase in data traffic from mobiles to the base station has led to a growing interest in a scheduled reverse link in the 1xEV-DO system. We address the reverse link scheduling problem in a multi-cell scenario with interference constraints both within and outside the cell. This approach leads to a co-operative scheduling algorithm where each base station in a cellular network maximizes the sum of mobile data transmission rates subject to linear constraints on (1) the maximum received power for individual mobiles(2) the total interference caused by scheduled mobiles to (a) traffic and control channels of other mobiles within the cell and (b) mobiles in neighboring cells. Simulations of the reverse link structure based on the 1xEV-D0 system highlight the distinct advantages of this algorithm in ensuring predictable inter-cell interference and higher aggregate cell throughputs

    Application of genetic algorithm to wireless communications

    Get PDF
    Wireless communication is one of the most active areas of technology development of our time. Like all engineering endeavours, the subject of the wireless communication also brings with it a whole host of complex design issues, concerning network design, signal detection, interference cancellation, and resource allocation, to name a few. Many of these problems have little knowledge of the solution space or have very large search space, which are known as non-deterministic polynomial (NP) -hard or - complete and therefore intractable to solution using analytical approaches. Consequently, varied heuristic methods attempts have been made to solve them ranging from simple deterministic algorithms to complicated random-search methods. Genetic alcyorithm (GA) is an adaptive heuristic search algorithm premised on the evolutionary ideas of evolution and natural selection, which has been successfully applied to a variety of complicated problems arising from physics, engineering, biology, economy or sociology. Due to its outstanding search strength and high designable components, GA has attracted great interests even in the wireless domain. This dissertation is devoted to the application of GA to solve various difficult problems spotlighted from the wireless systems. These problems have been mathematically formulated in the constrained optimisation context, and the main work has been focused on developing the problem-specific GA approaches, which incorporate many modifications to the traditional GA in order to obtain enhanced performance. Comparative results lead to the conclusion that the proposed GA approaches are generally able to obtain the optimal or near-optimal solutions to the considered optimisation problems provided that the appropriate representation, suitable fitness function, and problem-specific operators are utilised. As a whole, the present work is largely original and should be of great interest to the design of practical GA approaches to solve realistic problems in the wireless communications systems.EThOS - Electronic Theses Online ServiceBritish Council (ORS) : Newcastle UniversityGBUnited Kingdo
    corecore