18,069 research outputs found

    HotMobile 2008: Postconference Report

    Get PDF
    HotMobile 2008 presented a two-day program on mobile computing systems and applications. The authors focuses on the sessions on sensors, modularity, wireless, security, systems, and screens. The mobile device is the most amazing invention in history and that it has had the largest impact on human kind. Because mobile phones combine mobile devices with ongoing developments in software and communication technologies, they have the potential to change the way people think and act

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Intelligent Energy Optimization for User Intelligible Goals in Smart Home Environments

    Get PDF
    Intelligent management of energy consumption is one of the key issues for future energy distribution systems, smart buildings, and consumer appliances. The problem can be tackled both from the point of view of the utility provider, with the intelligence embedded in the smart grid, or from the point of view of the consumer, thanks to suitable local energy management systems (EMS). Conserving energy, however, should respect the user requirements regarding the desired state of the environment, therefore an EMS should constantly and intelligently find the balance between user requirements and energy saving. The paper proposes a solution to this problem, based on explicit high-level modeling of user intentions and automatic control of device states through the solution and optimization of a constrained Boolean satisfiability problem. The proposed approach has been integrated into a smart environment framework, and promising preliminary results are reporte
    corecore