179 research outputs found

    Medical ultrasound imaging: To GPU or not to GPU?

    Get PDF
    Medical ultrasound imaging stands out from other modalities in providing real-time diagnostic capability at an affordable price while being physically portable. This article explores the suitability of using GPUs as the primary signal and image processors for future medical ultrasound imaging systems. A case study on synthetic aperture (SA) imaging illustrates the promise of using high-performance GPUs in such systems. © 2011 IEEE.published_or_final_versio

    Parallelization and improvement of beamforming process in synthetic aperture systems for real-time ultrasonic image generation

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 9-02-2016La ecografía es hoy en día uno de los métodos de visualización más populares para examinar el interior de cuerpos opacos. Su aplicación es especialmente significativa tanto en el campo del diagnóstico médico como en las aplicaciones de evaluación no destructiva en el ámbito industrial, donde se evalúa la integridad de un componente o una estructura. El desarrollo de sistemas ecográficos de alta calidad y con buenas prestaciones se basa en el empleo de sistemas multisensoriales conocidos como arrays que pueden estar compuestos por varias decenas de elementos. El desarrollo de estos dispositivos tiene asociada una elevada complejidad, tanto por el número de sensores y la electrónica necesaria para la adquisición paralela de señales, como por la etapa de procesamiento de los datos adquiridos que debe operar en tiempo real. Esta etapa de procesamiento de señal trabaja con un elevado flujo de datos en paralelo y desarrolla, además de la composición de imagen, otras sofisticadas técnicas de medidas sobre los datos (medida de elasticidad, flujo, etc). En este sentido, el desarrollo de nuevos sistemas de imagen con mayores prestaciones (resolución, rango dinámico, imagen 3D, etc) está fuertemente limitado por el número de canales en la apertura del array. Mientras algunos estudios se han centrado en la reducción activa de sensores (sparse arrays como ejemplo), otros se han centrado en analizar diferentes estrategias de adquisiciónn que, operando con un número reducido de canales electrónicos en paralelo, sean capaz por multiplexación emular el funcionamiento de una apertura plena. A estas últimas técnicas se las agrupa mediante el concepto de Técnicas de Apertura Sintética (SAFT). Su interés radica en que no solo son capaces de reducir los requerimientos hardware del sistema (bajo consumo, portabilidad, coste, etc) sino que además permiten dentro de cierto compromiso la mejora de la calidad de imagen respecto a los sistemas convencionales...Ultrasound is nowadays one of the most popular visualization methods to examine the interior of opaque objects. Its application is particularly significant in the field of medical diagnosis as well as non-destructive evaluation applications in industry. The development of high performance ultrasound imaging systems is based on the use of multisensory systems known as arrays, which may be composed by dozens of elements. The development of these devices has associated a high complexity, due to the number of sensors and electronics needed for the parallel acquisition of signals, and for the processing stage of the acquired data which must operate on real-time. This signal processing stage works with a high data flow in parallel and develops, besides the image composition, other sophisticated measure techniques (measure of elasticity, flow, etc). In this sense, the development of new imaging systems with higher performance (resolution, dynamic range, 3D imaging, etc) is strongly limited by the number of channels in array’s aperture. While some studies have been focused on the reduction of active sensors (i.e. sparse arrays), others have been centered on analysing different acquisition strategies which, operating with reduced number of electronic channels in parallel, are able to emulate by multiplexing the behavior of a full aperture. These latest techniques are grouped under the term known as Synthetic Aperture Techniques (SAFT). Their interest is that they are able to reduce hardware requirements (low power, portability, cost, etc) and also allow to improve the image quality over conventional systems...Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    Ultrasound Imaging

    Get PDF
    In this book, we present a dozen state of the art developments for ultrasound imaging, for example, hardware implementation, transducer, beamforming, signal processing, measurement of elasticity and diagnosis. The editors would like to thank all the chapter authors, who focused on the publication of this book

    Architectural Support for Medical Imaging

    Full text link
    Advancements in medical imaging research are continuously providing doctors with better diagnostic information, removing the need for unnecessary surgeries and increasing accuracy in predicting life-threatening conditions. However, newly developed techniques are currently limited by the capabilities of existing computer hardware, restricting them to expensive, custom-designed machines that only the largest hospital systems can afford or even worse, precluding them entirely. Many of these issues are due to existing hardware being ill-suited for these types of algorithms and not designed with medical imaging in mind. In this thesis we discuss our efforts to motivate and democratize architectural support for advanced medical imaging tasks with MIRAQLE, a medical image reconstruction benchmark suite. In particular, MIRAQLE focuses on advanced image reconstruction techniques for 3D ultrasound, low-dose X-ray CT, and dynamic MRI. For each imaging modality we provide a detailed background and parallel implementations to enable future hardware development. In addition to providing baseline algorithms for these workloads, we also develop a unique analysis tool that provides image quality feedback for each simulation. This allows hardware designers to explore acceptable image quality trade-offs in algorithm-hardware co-design, potentially allowing for even more efficient solutions than hardware innovations alone could provide. We also motivate the need for such tools by discussing Sonic Millip3De, our low-power, highly parallel hardware for 3D ultrasound. Using Sonic Millip3De, we illustrate the orders-of-magnitude power efficiency improvement that better medical imaging hardware can provide, especially when developed with a hardware-software co-design. We also show validation of the design using a scaled-down FPGA proof-of-concept and discuss our further refinement of the hardware to support a wider range of applications and produce higher frame rates. Overall, with this thesis we hope to enable application specific hardware support for the critical medical imaging tasks in MIRAQLE to make them practical for wide clinical use.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137105/1/rsamp_1.pd

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci
    • …
    corecore