2,414 research outputs found

    A hybrid CFGTSA based approach for scheduling problem: a case study of an automobile industry

    Get PDF
    In the global competitive world swift, reliable and cost effective production subject to uncertain situations, through an appropriate management of the available resources, has turned out to be the necessity for surviving in the market. This inspired the development of the more efficient and robust methods to counteract the existing complexities prevailing in the market. The present paper proposes a hybrid CFGTSA algorithm inheriting the salient features of GA, TS, SA, and chaotic theory to solve the complex scheduling problems commonly faced by most of the manufacturing industries. The proposed CFGTSA algorithm has been tested on a scheduling problem of an automobile industry, and its efficacy has been shown by comparing the results with GA, SA, TS, GTS, and hybrid TSA algorithms

    Generalized Hybrid Evolutionary Algorithm Framework with a Mutation Operator Requiring no Adaptation

    Get PDF
    This paper presents a generalized hybrid evolutionary optimization structure that not only combines both nondeterministic and deterministic algorithms on their individual merits and distinct advantages, but also offers behaviors of the three originating classes of evolutionary algorithms (EAs). In addition, a robust mutation operator is developed in place of the necessity of mutation adaptation, based on the mutation properties of binary-coded individuals in a genetic algorithm. The behaviour of this mutation operator is examined in full and its performance is compared with adaptive mutations. The results show that the new mutation operator outperforms adaptive mutation operators while reducing complications of extra adaptive parameters in an EA representation

    Multiobjective Optimisation of Job Shop Scheduling of Renewable Powered Machinery

    Get PDF
    Postprin

    Optimizing Time Utilization of FMS

    Get PDF
    The aim of the research is to solve the problem of simultaneous production on the flexible manufacturing system with different combination of product types and quantities that will give maximal utilization of production system. The presumption for good utilization of FMS (Flexible Manufacturing System) is in forming of working order with such product type structure that will make possible of production processing with minimal time load of complete production system. Working order structure from the point of product types and quantities is dictated by market demands that are known earlier. Because the structure of particular working order is not harmonized with the exploitation characteristics of FMS, we are faced with problem how to realize working order in such conditions as well as how to achieve main goal: shorter machining cycle with less time occupation of production system. The method based on two phases for solving problem of control working order realization is presented in the work. In the first phase the selection of optimal combination of process plans which gives minimal time load of production system through simultaneous production of different products and their quantities is given. In the second phase the order of part production and the order of particular operations processing is optimized. The optimization problem in both phases of control is solved by application of genetic algorithm approach. The software for computing and optimizing of processing order on FMS is developed

    Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment Using Hybrid GA-PSO Algorithm

    Get PDF
    corecore