88,701 research outputs found

    A rolling-horizon quadratic-programming approach to the signal control problem in large-scale congested urban road networks

    Get PDF
    The paper investigates the efficiency of a recently developed signal control methodology, which offers a computationally feasible technique for real-time network-wide signal control in large-scale urban traffic networks and is applicable also under congested traffic conditions. In this methodology, the traffic flow process is modeled by use of the store-and-forward modeling paradigm, and the problem of network-wide signal control (including all constraints) is formulated as a quadratic-programming problem that aims at minimizing and balancing the link queues so as to minimize the risk of queue spillback. For the application of the proposed methodology in real time, the corresponding optimization algorithm is embedded in a rolling-horizon (model-predictive) control scheme. The control strategy’s efficiency and real-time feasibility is demonstrated and compared with the Linear-Quadratic approach taken by the signal control strategy TUC (Traffic-responsive Urban Control) as well as with optimized fixed-control settings via their simulation-based application to the road network of the city centre of Chania, Greece, under a number of different demand scenarios. The comparative evaluation is based on various criteria and tools including the recently proposed fundamental diagram for urban network traffic

    A hybrid strategy for real-time traffic signal control of urban road networks

    Get PDF
    The recently developed traffic signal control strategy known as traffic-responsive urban control (TUC) requires availability of a fixed signal plan that is sufficiently efficient under undersaturated traffic conditions. To drop this requirement, the well-known Webster procedure for fixed-signal control derivation at isolated junctions is appropriately employed for real-time operation based on measured flows. It is demonstrated via simulation experiments and field application that the following hold: 1) The developed real-time demand-based approach is a viable real-time signal control strategy for undersaturated traffic conditions. 2) It can indeed be used within TUC to drop the requirement for a prespecified fixed signal plan. 3) It may, under certain conditions, contribute to more efficient results, compared with the original TUC method

    The urban real-time traffic control (URTC) system : a study of designing the controller and its simulation

    Get PDF
    The growth of the number of automobiles on the roads in China has put higher demands on the traffic control system that needs to efficiently reduce the level of congestion occurrence, which increases travel delay, fuel consumption, and air pollution. The traffic control system, urban real-time traffic control system based on multi-agent (MA-URTC) is presented in this thesis. According to the present situation and the traffic's future development in China, the researches on intelligent traffic control strategy and simulation based on agent lays a foundation for the realization of the system. The thesis is organized as follows: The first part focuses on the intersection' real-time signal control strategy. It contains the limitations of current traffic control systems, application of artificial intelligence in the research, how to bring the dynamic traffic flow forecast into effect by combining the neural network with the genetic arithmetic, and traffic signal real-time control strategy based on fuzzy control. The author uses sorne simple simulation results to testify its superiority. We adopt the latest agent technology in designing the logical structure of the MA-URTC system. By exchanging traffic flows information among the relative agents, MA-URTC provides a new concept in urban traffic control. With a global coordination and cooperation on autonomy-based view of the traffic in cities, MA-URTC anticipates the congestion and control traffic flows. It is designed to support the real-time dynamic selection of intelligent traffic control strategy and the real-time communication requirements, together with a sufficient level of fault-tolerance. Due to the complexity and levity of urban traffic, none strategy can be universally applicable. The agent can independently choose the best scheme according to the real-time situation. To develop an advanced traffic simulation system it can be helpful for us to find the best scheme and the best switch-point of different schemes. Thus we can better deal with the different real-time traffic situations. The second part discusses the architecture and function of the intelligent traffic control simulation based on agent. Meanwhile the author discusses the design model of the vehicle-agent, road agent in traffic network and the intersection-agent so that we can better simulate the real-time environment. The vehicle-agent carries out the intelligent simulation based on the characteristics of the drivers in the actual traffic condition to avoid the disadvantage of the traditional traffic simulation system, simple-functioned algorithm of the vehicles model and unfeasible forecasting hypothesis. It improves the practicability of the whole simulation system greatly. The road agent's significance lies in its guidance of the traffic participants. It avoids the urban traffic control that depends on only the traffic signal control at intersection. It gives the traffic participants the most comfortable and direct guidance in traveling. It can also make a real-time and dynamic adjustment on the urban traffic flow, thus greatly lighten the pressure of signal control in intersection area. To sorne extent, the road agent is equal to the pre-caution mechanism. In the future, the construction of urban roads tends to be more intelligent. Therefore, the research on road agent is very important. All kinds of agents in MA-URTC are interconnected through a computer network. In the end, the author discusses the direction of future research. As the whole system is a multi-agent system, the intersection, the road and the vehicle belongs to multi-agent system respectively. So the emphasis should be put on the structure design and communication of all kinds of traffic agents in the system. Meanwhile, as an open and flexible real-time traffic control system, it is also concerned with how to collaborate with other related systems effectively, how to conform the resources and how to make the traffic participants anywhere throughout the city be in the best traffic guidance at all times and places. To actualize the genuine ITS will be our final goal. \ud ______________________________________________________________________________ \ud MOTS-CLÉS DE L’AUTEUR : Artificial Intelligence, Computer simulation, Fuzzy control, Genetic Algorithm, Intelligent traffic control, ITS, Multi-agent, Neural Network, Real-time

    Intersection SPaT Estimation by means of Single-Source Connected Vehicle Data

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Current traffic management systems in urban networks require real-time estimation of the traffic states. With the development of in-vehicle and communication technologies, connected vehicle data has emerged as a new data source for traffic measurement and estimation. In this work, a machine learning-based methodology for signal phase and timing information (SPaT) which is highly valuable for many applications such as green light optimal advisory systems and real-time vehicle navigation is proposed. The proposed methodology utilizes data from connected vehicles travelling within urban signalized links to estimate the queue tail location, vehicle accumulation, and subsequently, link outflow. Based on the produced high-resolution outflow estimates and data from crossing connected vehicles, SPaT information is estimated via correlation analysis and a machine learning approach. The main contribution is that the single-source proposed approach relies merely on connected vehicle data and requires neither prior information such as intersection cycle time nor data from other sources such as conventional traffic measuring tools. A sample four-leg intersection where each link comprises different number of lanes and experiences different traffic condition is considered as a testbed. The validation of the developed approach has been undertaken by comparing the produced estimates with realistic micro-simulation results as ground truth, and the achieved simulation results are promising even at low penetration rates of connected vehicles

    Real scenario and simulations on GLOSA traffic light system for reduced CO2 emissions, waiting time and travel time

    Get PDF
    Cooperative ITS is enabling vehicles to communicate with the infrastructure to provide improvements in traffic control. A promising approach consists in anticipating the road profile and the upcoming dynamic events like traffic lights. This topic has been addressed in the French public project Co-Drive through functions developed by Valeo named Green Light Optimal Speed Advisor (GLOSA). The system advises the optimal speed to pass the next traffic light without stopping. This paper presents results of its performance in different scenarios through simulations and real driving measurements. A scaling is done in an urban area, with different penetration rates in vehicle and infrastructure equipment for vehicular communication. Our simulation results indicate that GLOSA can reduce CO2 emissions, waiting time and travel time, both in experimental conditions and in real traffic conditions.Comment: in 22nd ITS World Congress, Oct 2015, Bordeaux, France. 201
    • …
    corecore