91,695 research outputs found

    Degree Ranking Using Local Information

    Get PDF
    Most real world dynamic networks are evolved very fast with time. It is not feasible to collect the entire network at any given time to study its characteristics. This creates the need to propose local algorithms to study various properties of the network. In the present work, we estimate degree rank of a node without having the entire network. The proposed methods are based on the power law degree distribution characteristic or sampling techniques. The proposed methods are simulated on synthetic networks, as well as on real world social networks. The efficiency of the proposed methods is evaluated using absolute and weighted error functions. Results show that the degree rank of a node can be estimated with high accuracy using only 1%1\% samples of the network size. The accuracy of the estimation decreases from high ranked to low ranked nodes. We further extend the proposed methods for random networks and validate their efficiency on synthetic random networks, that are generated using Erd\H{o}s-R\'{e}nyi model. Results show that the proposed methods can be efficiently used for random networks as well

    Extraction and Analysis of Facebook Friendship Relations

    Get PDF
    Online Social Networks (OSNs) are a unique Web and social phenomenon, affecting tastes and behaviors of their users and helping them to maintain/create friendships. It is interesting to analyze the growth and evolution of Online Social Networks both from the point of view of marketing and other of new services and from a scientific viewpoint, since their structure and evolution may share similarities with real-life social networks. In social sciences, several techniques for analyzing (online) social networks have been developed, to evaluate quantitative properties (e.g., defining metrics and measures of structural characteristics of the networks) or qualitative aspects (e.g., studying the attachment model for the network evolution, the binary trust relationships, and the link prediction problem).\ud However, OSN analysis poses novel challenges both to Computer and Social scientists. We present our long-term research effort in analyzing Facebook, the largest and arguably most successful OSN today: it gathers more than 500 million users. Access to data about Facebook users and their friendship relations, is restricted; thus, we acquired the necessary information directly from the front-end of the Web site, in order to reconstruct a sub-graph representing anonymous interconnections among a significant subset of users. We describe our ad-hoc, privacy-compliant crawler for Facebook data extraction. To minimize bias, we adopt two different graph mining techniques: breadth-first search (BFS) and rejection sampling. To analyze the structural properties of samples consisting of millions of nodes, we developed a specific tool for analyzing quantitative and qualitative properties of social networks, adopting and improving existing Social Network Analysis (SNA) techniques and algorithms

    Online Influence Maximization (Extended Version)

    Full text link
    Social networks are commonly used for marketing purposes. For example, free samples of a product can be given to a few influential social network users (or "seed nodes"), with the hope that they will convince their friends to buy it. One way to formalize marketers' objective is through influence maximization (or IM), whose goal is to find the best seed nodes to activate under a fixed budget, so that the number of people who get influenced in the end is maximized. Recent solutions to IM rely on the influence probability that a user influences another one. However, this probability information may be unavailable or incomplete. In this paper, we study IM in the absence of complete information on influence probability. We call this problem Online Influence Maximization (OIM) since we learn influence probabilities at the same time we run influence campaigns. To solve OIM, we propose a multiple-trial approach, where (1) some seed nodes are selected based on existing influence information; (2) an influence campaign is started with these seed nodes; and (3) users' feedback is used to update influence information. We adopt the Explore-Exploit strategy, which can select seed nodes using either the current influence probability estimation (exploit), or the confidence bound on the estimation (explore). Any existing IM algorithm can be used in this framework. We also develop an incremental algorithm that can significantly reduce the overhead of handling users' feedback information. Our experiments show that our solution is more effective than traditional IM methods on the partial information.Comment: 13 pages. To appear in KDD 2015. Extended versio

    Social Bootstrapping: How Pinterest and Last.fm Social Communities Benefit by Borrowing Links from Facebook

    Full text link
    How does one develop a new online community that is highly engaging to each user and promotes social interaction? A number of websites offer friend-finding features that help users bootstrap social networks on the website by copying links from an established network like Facebook or Twitter. This paper quantifies the extent to which such social bootstrapping is effective in enhancing a social experience of the website. First, we develop a stylised analytical model that suggests that copying tends to produce a giant connected component (i.e., a connected community) quickly and preserves properties such as reciprocity and clustering, up to a linear multiplicative factor. Second, we use data from two websites, Pinterest and Last.fm, to empirically compare the subgraph of links copied from Facebook to links created natively. We find that the copied subgraph has a giant component, higher reciprocity and clustering, and confirm that the copied connections see higher social interactions. However, the need for copying diminishes as users become more active and influential. Such users tend to create links natively on the website, to users who are more similar to them than their Facebook friends. Our findings give new insights into understanding how bootstrapping from established social networks can help engage new users by enhancing social interactivity.Comment: Proc. 23rd International World Wide Web Conference (WWW), 201
    • …
    corecore