876 research outputs found

    Numeration Systems: a Link between Number Theory and Formal Language Theory

    Full text link
    We survey facts mostly emerging from the seminal results of Alan Cobham obtained in the late sixties and early seventies. We do not attempt to be exhaustive but try instead to give some personal interpretations and some research directions. We discuss the notion of numeration systems, recognizable sets of integers and automatic sequences. We briefly sketch some results about transcendence related to the representation of real numbers. We conclude with some applications to combinatorial game theory and verification of infinite-state systems and present a list of open problems.Comment: 21 pages, 3 figures, invited talk DLT'201

    Shift Radix Systems - A Survey

    Full text link
    Let d≥1d\ge 1 be an integer and r=(r0,…,rd−1)∈Rd{\bf r}=(r_0,\dots,r_{d-1}) \in \mathbf{R}^d. The {\em shift radix system} τr:Zd→Zd\tau_\mathbf{r}: \mathbb{Z}^d \to \mathbb{Z}^d is defined by τr(z)=(z1,…,zd−1,−⌊rz⌋)t(z=(z0,…,zd−1)t). \tau_{{\bf r}}({\bf z})=(z_1,\dots,z_{d-1},-\lfloor {\bf r} {\bf z}\rfloor)^t \qquad ({\bf z}=(z_0,\dots,z_{d-1})^t). τr\tau_\mathbf{r} has the {\em finiteness property} if each z∈Zd{\bf z} \in \mathbb{Z}^d is eventually mapped to 0{\bf 0} under iterations of τr\tau_\mathbf{r}. In the present survey we summarize results on these nearly linear mappings. We discuss how these mappings are related to well-known numeration systems, to rotations with round-offs, and to a conjecture on periodic expansions w.r.t.\ Salem numbers. Moreover, we review the behavior of the orbits of points under iterations of τr\tau_\mathbf{r} with special emphasis on ultimately periodic orbits and on the finiteness property. We also describe a geometric theory related to shift radix systems.Comment: 45 pages, 16 figure

    Purely periodic beta-expansions in the Pisot non-unit case

    Get PDF
    It is well known that real numbers with a purely periodic decimal expansion are the rationals having, when reduced, a denominator coprime with 10. The aim of this paper is to extend this result to beta-expansions with a Pisot base beta which is not necessarily a unit: we characterize real numbers having a purely periodic expansion in such a base; this characterization is given in terms of an explicit set, called generalized Rauzy fractal, which is shown to be a graph-directed self-affine compact subset of non-zero measure which belongs to the direct product of Euclidean and p-adic spaces

    Dynamical Directions in Numeration

    Get PDF
    International audienceWe survey definitions and properties of numeration from a dynamical point of view. That is we focuse on numeration systems, their associated compactifications, and the dynamical systems that can be naturally defined on them. The exposition is unified by the notion of fibred numeration system. A lot of examples are discussed. Various numerations on natural, integral, real or complex numbers are presented with a special attention payed to beta-numeration and its generalisations, abstract numeration systems and shift radix systems. A section of applications ends the paper

    The minimal automaton recognizing mN in a linear numeration system

    Get PDF
    We study the structure of automata accepting the greedy representations of N in a wide class of numeration systems. We describe the conditions under which such automata can have more than one strongly connected component and the form of any such additional components. Our characterization applies, in particular, to any automaton arising from a Bertrand numeration system. Furthermore, we show that for any automaton A arising from a system with a dominant root β > 1, there is a morphism mapping A onto the automaton arising from the Bertrand system associated with the number β. Under some mild assumptions, we also study the state complexity of the trim minimal automaton accepting the greedy representations of the multiples of m ≥ 2 for a wide class of linear numeration systems. As an example, the number of states of the trim minimal automaton accepting the greedy representations of mN in the Fibonacci system is exactly 2m2

    Automatic sequences: from rational bases to trees

    Full text link
    The nnth term of an automatic sequence is the output of a deterministic finite automaton fed with the representation of nn in a suitable numeration system. In this paper, instead of considering automatic sequences built on a numeration system with a regular numeration language, we consider these built on languages associated with trees having periodic labeled signatures and, in particular, rational base numeration systems. We obtain two main characterizations of these sequences. The first one is concerned with rr-block substitutions where rr morphisms are applied periodically. In particular, we provide examples of such sequences that are not morphic. The second characterization involves the factors, or subtrees of finite height, of the tree associated with the numeration system and decorated by the terms of the sequence.Comment: 25 pages, 15 figure
    • …
    corecore