1,105 research outputs found

    Representing Scott sets in algebraic settings

    Get PDF
    We prove that for every Scott set SS there are SS-saturated real closed fields and models of Presburger arithmetic

    Models of true arithmetic are integer parts of nice real closed fields

    Full text link
    Exploring further the connection between exponentiation on real closed fields and the existence of an integer part modelling strong fragments of arithmetic, we demonstrate that each model of true arithmetic is an integer part of an exponential real closed field that is elementary equivalent to the reals with exponentiation

    Some new results on decidability for elementary algebra and geometry

    Get PDF
    We carry out a systematic study of decidability for theories of (a) real vector spaces, inner product spaces, and Hilbert spaces and (b) normed spaces, Banach spaces and metric spaces, all formalised using a 2-sorted first-order language. The theories for list (a) turn out to be decidable while the theories for list (b) are not even arithmetical: the theory of 2-dimensional Banach spaces, for example, has the same many-one degree as the set of truths of second-order arithmetic. We find that the purely universal and purely existential fragments of the theory of normed spaces are decidable, as is the AE fragment of the theory of metric spaces. These results are sharp of their type: reductions of Hilbert's 10th problem show that the EA fragments for metric and normed spaces and the AE fragment for normed spaces are all undecidable.Comment: 79 pages, 9 figures. v2: Numerous minor improvements; neater proofs of Theorems 8 and 29; v3: fixed subscripts in proof of Lemma 3

    Axiomatics for the external numbers of nonstandard analysis

    Get PDF
    Neutrices are additive subgroups of a nonstandard model of the real numbers. An external number is the algebraic sum of a nonstandard real number and a neutrix. Due to the stability by some shifts, external numbers may be seen as mathematical models for orders of magnitude. The algebraic properties of external numbers gave rise to the so-called solids, which are extensions of ordered fields, having a restricted distributivity law. However, necessary and sufficient conditions can be given for distributivity to hold. In this article we develop an axiomatics for the external numbers. The axioms are similar to, but mostly somewhat weaker than the axioms for the real numbers and deal with algebraic rules, Dedekind completeness and the Archimedean property. A structure satisfying these axioms is called a complete arithmetical solid. We show that the external numbers form a complete arithmetical solid, implying the consistency of the axioms presented. We also show that the set of precise elements (elements with minimal magnitude) has a built-in nonstandard model of the rationals. Indeed the set of precise elements is situated between the nonstandard rationals and the nonstandard reals whereas the set of non-precise numbers is completely determined

    Logical Dreams

    Full text link
    We discuss the past and future of set theory, axiom systems and independence results. We deal in particular with cardinal arithmetic

    The non-unique Universe

    Get PDF
    The purpose of this paper is to elucidate, by means of concepts and theorems drawn from mathematical logic, the conditions under which the existence of a multiverse is a logical necessity in mathematical physics, and the implications of Godel's incompleteness theorem for theories of everything. Three conclusions are obtained in the final section: (i) the theory of the structure of our universe might be an undecidable theory, and this constitutes a potential epistemological limit for mathematical physics, but because such a theory must be complete, there is no ontological barrier to the existence of a final theory of everything; (ii) in terms of mathematical logic, there are two different types of multiverse: classes of non-isomorphic but elementarily equivalent models, and classes of model which are both non-isomorphic and elementarily inequivalent; (iii) for a hypothetical theory of everything to have only one possible model, and to thereby negate the possible existence of a multiverse, that theory must be such that it admits only a finite model
    corecore