117,745 research outputs found

    Project SEMACODE : a scale-invariant object recognition system for content-based queries in image databases

    Get PDF
    For the efficient management of large image databases, the automated characterization of images and the usage of that characterization for searching and ordering tasks is highly desirable. The purpose of the project SEMACODE is to combine the still unsolved problem of content-oriented characterization of images with scale-invariant object recognition and modelbased compression methods. To achieve this goal, existing techniques as well as new concepts related to pattern matching, image encoding, and image compression are examined. The resulting methods are integrated in a common framework with the aid of a content-oriented conception. For the application, an image database at the library of the university of Frankfurt/Main (StUB; about 60000 images), the required operations are developed. The search and query interfaces are defined in close cooperation with the StUB project “Digitized Colonial Picture Library”. This report describes the fundamentals and first results of the image encoding and object recognition algorithms developed within the scope of the project

    Crossover critical behavior in the three-dimensional Ising model

    Full text link
    The character of critical behavior in physical systems depends on the range of interactions. In the limit of infinite range of the interactions, systems will exhibit mean-field critical behavior, i.e., critical behavior not affected by fluctuations of the order parameter. If the interaction range is finite, the critical behavior asymptotically close to the critical point is determined by fluctuations and the actual critical behavior depends on the particular universality class. A variety of systems, including fluids and anisotropic ferromagnets, belongs to the three-dimensional Ising universality class. Recent numerical studies of Ising models with different interaction ranges have revealed a spectacular crossover between the asymptotic fluctuation-induced critical behavior and mean-field-type critical behavior. In this work, we compare these numerical results with a crossover Landau model based on renormalization-group matching. For this purpose we consider an application of the crossover Landau model to the three-dimensional Ising model without fitting to any adjustable parameters. The crossover behavior of the critical susceptibility and of the order parameter is analyzed over a broad range (ten orders) of the scaled distance to the critical temperature. The dependence of the coupling constant on the interaction range, governing the crossover critical behavior, is discussedComment: 10 pages in two-column format including 9 figures and 1 table. Submitted to J. Stat. Phys. in honor of M. E. Fisher's 70th birthda

    Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. I. Theory

    Get PDF
    A method is presented for accurately solving the Schrödinger equation for the reactive collision of an atom with a diatomic molecule in three dimensions on a single Born–Oppenheimer potential energy surface. The Schrödinger equation is first expressed in body‐fixed coordinates. The wavefunction is then expanded in a set of vibration–rotation functions, and the resulting coupled equations are integrated in each of the three arrangement channel regions to generate primitive solutions. Next, these are smoothly matched to each other on three matching surfaces which appropriately separate the arrangement channel regions. The resulting matched solutions are linearly combined to generate wavefunctions which satisfy the reactance and scattering matrix boundary conditions, from which the corresponding R and S matrices are obtained. The scattering amplitudes in the helicity representation are easily calculated from the body fixed S matrices, and from these scattering amplitudes several types of differential and integral cross sections are obtained. Simplifications arising from the use of parity symmetry to decouple the coupled‐channel equations, the matching procedures and the asymptotic analysis are discussed in detail. Relations between certain important angular momentum operators in body‐fixed coordinate systems are derived and the asymptotic solutions to the body‐fixed Schrödinger equation are analyzed extensively. Application of this formalism to the three‐dimensional H+H_2 reaction is considered including the use of arrangement channel permutation symmetry, even–odd rotational decoupling and postantisymmetrization. The range of applicability and limitations of the method are discussed

    MASCOT: a mechanism for attention-based scale-invariant object recognition in images

    Get PDF
    The efficient management of large multimedia databases requires the development of new techniques to process, characterize, and search for multimedia objects. Especially in the case of image data, the rapidly growing amount of documents prohibits a manual description of the images’ content. Instead, the automated characterization is highly desirable to support annotation and retrieval of digital images. However, this is a very complex and still unsolved task. To contribute to a solution of this problem, we have developed a mechanism for recognizing objects in images based on the query by example paradigm. Therefore, the most salient image features of an example image representing the searched object are extracted to obtain a scale-invariant object model. The use of this model provides an efficient and robust strategy for recognizing objects in images independently of their size. Further applications of the mechanism are classical recognition tasks such as scene decomposition or object tracking in video sequences

    The thinning of lamellae in surfactant-free foams with non-Newtonian liquid phase

    Get PDF
    Thinning rates of liquid lamellae in surfactant-free non-Newtonian gas–liquid foams, appropriate for ceramic or polymer melts and also in metals near the melting point, are derived in two dimensions by matched asymptotic analysis valid at small capillary number. The liquid viscosity is modelled (i) as a power-law function of the shear rate and (ii) by the Ellis law. Equations governing gas–liquid interface dynamics and variations in liquid viscosity are derived within the lamellar, transition and plateau border regions of a corner of the liquid surrounding a gas bubble. The results show that the viscosity varies primarily in the very short transition region lying between the lamellar and the Plateau border regions where the shear rates can become very large. In contrast to a foam with Newtonian liquid, the matching condition which determines the rate of lamellar thinning is non-local. In all cases considered, calculated lamellar thinning rates exhibit an initial transient thinning regime, followed by a t−2 power-law thinning regime, similar to the behaviour seen in foams with Newtonian liquid phase. In semi-arid foam, in which the liquid fraction is O(1) in the small capillary number, results explicitly show that for both the power-law and Ellis-law model of viscosity, the thinning of lamella in non-Newtonian and Newtonian foams is governed by the same equation, from which scaling laws can be deduced. This result is consistent with recently published experimental results on forced foam drainage. However, in an arid foam, which has much smaller volume fraction of liquid resulting in an increase in the Plateau border radius of curvature as lamellar thinning progresses, the scaling law depends on the material and the thinning rate is not independent of the liquid viscosity model parameters. Calculations of thinning rates, viscosities, pressures, interface shapes and shear rates in the transition region are presented using data for real liquids from the literature. Although for shear-thinning fluids the power-law viscosity becomes infinite at the boundaries of the internal transition region where the shear rate is zero, the interface shape, the pressure and the internal shear rates calculated by both rheological models are indistinguishable

    Two-dimensional perturbations in a scalar model for shear banding

    Full text link
    We present an analytical study of a toy model for shear banding, without normal stresses, which uses a piecewise linear approximation to the flow curve (shear stress as a function of shear rate). This model exhibits multiple stationary states, one of which is linearly stable against general two-dimensional perturbations. This is in contrast to analogous results for the Johnson-Segalman model, which includes normal stresses, and which has been reported to be linearly unstable for general two-dimensional perturbations. This strongly suggests that the linear instabilities found in the Johnson-Segalman can be attributed to normal stress effects.Comment: 16 pages, 10 figures, to appear in EPJE, available online first, click DOI or http://www.springerlink.com/content/q1q0187385017628

    On 'spot' evolution under an adverse pressure gradient

    Get PDF
    The unsteady travelling 'spots' or spot-like disturbances are produced, in an otherwise planar boundary layer, by an initial impulse/blip, from wall forcing or from nearby external forcing. Theory and computations are described for the evolving spot-like structure, yielding initial-value problems for inviscid spot-like disturbances, commencing near the onset of an adverse pressure gradient. A transient stage incorporates the initial conditions, following which adverse pressure gradient effects become significant. Leading and trailing critical layers then form, which confine and define the spot-like disturbance, and these depart from the wall downstream accompanied by disturbance amplification and mean flow distortion. The interplay of adverse pressure gradient effects with three-dimensionality, nonlinearity and non-parallelism is considered in turn.Three-dimensional effects provoke a universal closed planform of spot-like disturbance, which has a different side behaviour from the zero-gradient case. Nonlinear interactions eventually change the internal structure, particularly at the spot-like disturbance leading edge, while pointing to the mean-flow alteration underhanging the spot-like disturbance and to a pressure-feedback alteration for the region behind the spot-like disturbance. These two alterations offer complementary mechanisms for describing the calmed region trailing a spot-like disturbance, in which an attached thinned wall layer is identified. Non-parallel effects lead to enhanced spot-like disturbance growth and larger-scale/shorter-scale interactive behaviour downstream. The approach to separation is also considered, yielding maximal growth for small spot-like disturbances at 5/6 of the way from the minimum pressure position to the separation position. Links with recent experiments on adverse-gradient spot-like disturbances and with findings on calmed region properties are investigated, as well as the unsteady forcing effects from an incident relatively thick vortical wake outside the boundary layer
    corecore