178 research outputs found

    Designing novel abstraction networks for ontology summarization and quality assurance

    Get PDF
    Biomedical ontologies are complex knowledge representation systems. Biomedical ontologies support interdisciplinary research, interoperability of medical systems, and Electronic Healthcare Record (EHR) encoding. Ontologies represent knowledge using concepts (entities) linked by relationships. Ontologies may contain hundreds of thousands of concepts and millions of relationships. For users, the size and complexity of ontologies make it difficult to comprehend “the big picture” of an ontology\u27s content. For ontology editors, size and complexity make it difficult to uncover errors and inconsistencies. Errors in an ontology will ultimately affect applications that utilize the ontology. In prior studies abstraction networks (AbNs) were developed to provide a compact summary of an ontology\u27s content and structure. AbNs have been shown to successfully support ontology summarization and quality assurance (QA), e.g., for SNOMED CT and NCIt. Despite the success of these previous studies, several major, unaddressed issues affect the applicability and usability of AbNs. This thesis is broken into five major parts, each addressing one issue. The first part of this dissertation addresses the scalability of AbN-based QA techniques to large SNOMED CT hierarchies. Previous studies focused on relatively small hierarchies. The QA techniques developed for these small hierarchies do not scale to large hierarchies, e.g., Procedure and Clinical finding. A new type of AbN, called a subtaxonomy, is introduced to address this problem. Subtaxonomies summarize a subset of an ontology\u27s content. Several types of subtaxonomies and subtaxonomy-based QA studies are discussed. The second part of this dissertation addresses the need for summarization and QA methods for the twelve SNOMED CT hierarchies with no lateral relationships. Previously developed SNOMED CT AbN derivation methodologies, which require lateral relationships, cannot be applied to these hierarchies. The Tribal Abstraction Network (TAN) is a new type of AbN derived using only hierarchical relationships. A TAN-based QA methodology is introduced and the results of a QA review of the Observable entity hierarchy are reported. The third part focuses on the development of generic AbN derivation methods that are applicable to groups of structurally similar ontologies, e.g., those developed in the Web Ontology Language (OWL) format. Previously, AbN derivation techniques were applicable to only a single ontology at a time. AbNs that are applicable to many OWL ontologies are introduced, a preliminary study on OWL AbN granularity is reported on, and the results of several QA studies are presented. The fourth part describes Diff Abstraction Networks, which summarize and visualize the structural differences between two ontology releases. Diff Area Taxonomy and Diff Partial-area Taxonomy derivation methodologies are introduced and Diff Partial-area taxonomies are derived for three OWL ontologies. The Diff Abstraction Network approach is compared to the traditional ontology diff approach. Lastly, tools for deriving and visualizing AbNs are described. The Biomedical Layout Utility Framework is introduced to support the automatic creation, visualization, and exploration of abstraction networks for SNOMED CT and OWL ontologies

    Rab-KAMS: A reproducible knowledge management system with visualization for preserving Rabbit Farming and Production Knowledge

    Get PDF
    The sudden rise in rural-to-urban migration has been a key challenge threatening food security and most especially the survival of Rabbit Farming and Production (RFP) in Sub-Saharan Africa. Currently, significant knowledge of RFP is going into extinction as evident by the drastic fall in commercial rabbit farming and production indices. Hence, the need for a system to proactively preserve RFP knowledge for future potential farmers cannot be overemphasized. To this end, knowledge archiving and management are key concepts of ensuring long-term digital storage of conceptual blueprints and specifications of systems, methods and frameworks with capacity for future updates while making such information readily accessible to relevant stakeholders on demand. Therefore, a reproducible Rabbit production' Knowledge Archiving and Management System (Rab-KAMS) is developed in this paper. A 3-staged approach was adopted to develop the Rab-KAMS. This include a knowledge gathering and conceptualization stage; a knowledge revision stage to validate the authenticity and relevance of the gathered knowledge for its intended purpose and a prototype design stage adopting the use of unified modelling language conceptual workflows, ontology graphs and frame system. For seamless accessibility and ubiquitous purposes, the design was implemented into a mobile application having interactive end-users' interfaces developed using XML and Java in Android 3.0.2 Studio development environment while adopting the V-shaped software development model. The qualitative evaluation results obtained for Rab-KAMS based on users' rating and reviews indicate a high level of acceptability and reliability by the users. It also indicates that relevant RFP knowledge were correctly captured and provided in a user-friendly manner. The developed Rab-KAMS could offer seamless acquisition, representation, organization and mining of new and existing verified knowledge about RFP and in turn contributing to food security

    Information management in work organization domain in network organizations

    Get PDF
    Tese de mestrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Multi-View Ontology Explorer (MOE): Interactive Visual Exploration of Ontologies

    Get PDF
    An ontology is an explicit specification of a conceptualization. This specification consists of a common vocabulary and information structure of a domain. Ontologies have applications in many fields to semantically link information in a standardized manner. In these fields, it is often crucial for both expert and non-expert users to quickly grasp the contents of an ontology; and to achieve this, many ontology tools implement visualization components. There are many past works on ontology visualization, and most of these tools are adapted from tree and graph based visualization techniques (e.g. treemaps, node-link graphs, and 3D interfaces). However, due to the enormous size of ontologies, these existing tools have their own shortcomings when dealing information overload, usually resulting in clutter and occlusion on the screen. In this thesis, we propose a set of novel visualizations and interactions to visualize very large ontologies. We design 5 dynamically linked visualizations that focus on a different level of abstraction individually. These different levels of abstraction start from a high-level overview down to a low-level entity. In addition, these visualizations collectively visualize landmarks, routes, and survey knowledge to support the formation of mental models. Search and save features are implemented to support on-demand and guided exploration. Finally, we implement our design as a web application

    Semantic web approach for italian graduates' surveys: the AlmaLaurea ontology proposal

    Get PDF
    Il crescente sviluppo e la promozione della trasparenza dei dati nell’ambito della pubblica amministrazione copre molteplici aspetti, fra cui l’educazione universitaria. Attualmente sono difatti numerosi i dataset rilasciati in formato Linked Open Data disponibili a livello nazionale ed internazionale. Fra le informazioni pubblicamente disponibili spiccano concetti riguardo l’occupazione e la numerosità dei laureati. Nonostante il progresso riscontrato, la mancanza di una metodologia standard per la descrizione di informazioni statistiche sui laureati rende difficoltoso un confronto di determinati fatti a partire da differenti sorgenti di dati. Sul piano nazionale, le indagini AlmaLaurea colmano il gap informativo dell’eterogeneità delle fonti proponendo statistiche centralizzate su profilo dei laureati e relativa condizione occupazionale, aggiornate annualmente. Scopo del progetto di tesi è la realizzazione di un’ontologia di dominio che descriva diverse peculiarità dei laureati, promuovendo allo stesso tempo la definizione strutturata dei dati AlmaLaurea e la successiva pubblicazione nel contesto Linked Open Data. Il progetto, realizzato con l’ausilio delle tecnologie del Web Semantico, propone infine la creazione di un endpoint SPARQL e di una interfaccia web per l'interrogazione e la visualizzazione dei dati strutturati

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Intelligent IoT and Dynamic Network Semantic Maps for more Trustworthy Systems

    Get PDF
    As technology evolves, the Internet of Things (IoT) concept is gaining importance for constituting a foundation to reach optimum connectivity between people and things. For this to happen and to allow easier integration of sensors and other devices in these technologic environments (or networks), the configuration is a key process, promoting interoperability between heterogeneous devices and providing strategies and processes to enhance the network capabilities. The optimization of this important process of creating a truly dynamic network must be based on models that provide a standardization of communication patterns, protocols and technologies between the sensors. Despite standing as a major tendency today, many obstacles still arise when implementing an intelligent dynamic network. Existing models are not as widely adopted as expected and semantics are often not properly represented, hence resulting in complex and unsuitable configuration time. Thus, this work aims to understand the ideal models and ontologies to achieve proper architectures and semantic maps, which allow management and redundancy based on the information of the whole network, without compromising performance, and to develop a competent configuration of sensors to integrate in a contemporary industrial typical dynamic network

    An ontological framework for the formal representation and management of human stress knowledge

    Get PDF
    There is a great deal of information on the topic of human stress which is embedded within numerous papers across various databases. However, this information is stored, retrieved, and used often discretely and dispersedly. As a result, discovery and identification of the links and interrelatedness between different aspects of knowledge on stress is difficult. This restricts the effective search and retrieval of desired information. There is a need to organize this knowledge under a unifying framework, linking and analysing it in mutual combinations so that we can obtain an inclusive view of the related phenomena and new knowledge can emerge. Furthermore, there is a need to establish evidence-based and evolving relationships between the ontology concepts.Previous efforts to classify and organize stress-related phenomena have not been sufficiently inclusive and none of them has considered the use of ontology as an effective facilitating tool for the abovementioned issues.There have also been some research works on the evolution and refinement of ontology concepts and relationships. However, these fail to provide any proposals for an automatic and systematic methodology with the capacity to establish evidence-based/evolving ontology relationships.In response to these needs, we have developed the Human Stress Ontology (HSO), a formal framework which specifies, organizes, and represents the domain knowledge of human stress. This machine-readable knowledge model is likely to help researchers and clinicians find theoretical relationships between different concepts, resulting in a better understanding of the human stress domain and its related areas. The HSO is formalized using OWL language and Protégé tool.With respect to the evolution and evidentiality of ontology relationships in the HSO and other scientific ontologies, we have proposed the Evidence-Based Evolving Ontology (EBEO), a methodology for the refinement and evolution of ontology relationships based on the evidence gleaned from scientific literature. The EBEO is based on the implementation of a Fuzzy Inference System (FIS).Our evaluation results showed that almost all stress-related concepts of the sample articles can be placed under one or more category of the HSO. Nevertheless, there were a number of limitations in this work which need to be addressed in future undertakings.The developed ontology has the potential to be used for different data integration and interoperation purposes in the domain of human stress. It can also be regarded as a foundation for the future development of semantic search engines in the stress domain
    • …
    corecore