1,995 research outputs found

    Learning Support and Trivial Prototypes for Interpretable Image Classification

    Full text link
    Prototypical part network (ProtoPNet) methods have been designed to achieve interpretable classification by associating predictions with a set of training prototypes, which we refer to as trivial prototypes because they are trained to lie far from the classification boundary in the feature space. Note that it is possible to make an analogy between ProtoPNet and support vector machine (SVM) given that the classification from both methods relies on computing similarity with a set of training points (i.e., trivial prototypes in ProtoPNet, and support vectors in SVM). However, while trivial prototypes are located far from the classification boundary, support vectors are located close to this boundary, and we argue that this discrepancy with the well-established SVM theory can result in ProtoPNet models with inferior classification accuracy. In this paper, we aim to improve the classification of ProtoPNet with a new method to learn support prototypes that lie near the classification boundary in the feature space, as suggested by the SVM theory. In addition, we target the improvement of classification results with a new model, named ST-ProtoPNet, which exploits our support prototypes and the trivial prototypes to provide more effective classification. Experimental results on CUB-200-2011, Stanford Cars, and Stanford Dogs datasets demonstrate that ST-ProtoPNet achieves state-of-the-art classification accuracy and interpretability results. We also show that the proposed support prototypes tend to be better localised in the object of interest rather than in the background region

    Teaching Categories to Human Learners with Visual Explanations

    Get PDF
    We study the problem of computer-assisted teaching with explanations. Conventional approaches for machine teaching typically only provide feedback at the instance level e.g., the category or label of the instance. However, it is intuitive that clear explanations from a knowledgeable teacher can significantly improve a student's ability to learn a new concept. To address these existing limitations, we propose a teaching framework that provides interpretable explanations as feedback and models how the learner incorporates this additional information. In the case of images, we show that we can automatically generate explanations that highlight the parts of the image that are responsible for the class label. Experiments on human learners illustrate that, on average, participants achieve better test set performance on challenging categorization tasks when taught with our interpretable approach compared to existing methods

    Precise Proximal Femur Fracture Classification for Interactive Training and Surgical Planning

    Full text link
    We demonstrate the feasibility of a fully automatic computer-aided diagnosis (CAD) tool, based on deep learning, that localizes and classifies proximal femur fractures on X-ray images according to the AO classification. The proposed framework aims to improve patient treatment planning and provide support for the training of trauma surgeon residents. A database of 1347 clinical radiographic studies was collected. Radiologists and trauma surgeons annotated all fractures with bounding boxes, and provided a classification according to the AO standard. The proposed CAD tool for the classification of radiographs into types "A", "B" and "not-fractured", reaches a F1-score of 87% and AUC of 0.95, when classifying fractures versus not-fractured cases it improves up to 94% and 0.98. Prior localization of the fracture results in an improvement with respect to full image classification. 100% of the predicted centers of the region of interest are contained in the manually provided bounding boxes. The system retrieves on average 9 relevant images (from the same class) out of 10 cases. Our CAD scheme localizes, detects and further classifies proximal femur fractures achieving results comparable to expert-level and state-of-the-art performance. Our auxiliary localization model was highly accurate predicting the region of interest in the radiograph. We further investigated several strategies of verification for its adoption into the daily clinical routine. A sensitivity analysis of the size of the ROI and image retrieval as a clinical use case were presented.Comment: Accepted at IPCAI 2020 and IJCAR

    Concept-Centric Transformers: Enhancing Model Interpretability through Object-Centric Concept Learning within a Shared Global Workspace

    Full text link
    To explain "black-box" properties of AI models, many approaches, such as post hoc and intrinsically interpretable models, have been proposed to provide plausible explanations that identify human-understandable features/concepts that a trained model uses to make predictions, and attention mechanisms have been widely used to aid in model interpretability by visualizing that information. However, the problem of configuring an interpretable model that effectively communicates and coordinates among computational modules has received less attention. A recently proposed shared global workspace theory demonstrated that networks of distributed modules can benefit from sharing information with a bandwidth-limited working memory because the communication constraints encourage specialization, compositionality, and synchronization among the modules. Inspired by this, we consider how such shared working memories can be realized to build intrinsically interpretable models with better interpretability and performance. Toward this end, we propose Concept-Centric Transformers, a simple yet effective configuration of the shared global workspace for interpretability consisting of: i) an object-centric-based architecture for extracting semantic concepts from input features, ii) a cross-attention mechanism between the learned concept and input embeddings, and iii) standard classification and additional explanation losses to allow human analysts to directly assess an explanation for the model's classification reasoning. We test our approach against other existing concept-based methods on classification tasks for various datasets, including CIFAR100 (super-classes), CUB-200-2011 (bird species), and ImageNet, and we show that our model achieves better classification accuracy than all selected methods across all problems but also generates more consistent concept-based explanations of classification output.Comment: 21 pages, 9 tables, 13 figure
    • …
    corecore