2,061 research outputs found

    Real time facial expression recognition with AdaBoost

    Full text link
    In this paper, we propose a novel method for facial expression recognition. The facial expression is extracted from human faces by an expression classifier that is learned from boosting Haar feature based Look-Up-Table type weak classifiers. The expression recognition system consists of three modules, face detection, facial feature landmark extraction and facial expression recognition. The implemented system can automatically recognize seven expressions in real time that include anger, disgust, fear, happiness, neutral, sadness and surprise. Experimental results are reported to show its potential applications in human computer interaction

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    Automated drowsiness detection for improved driving safety

    Get PDF
    Several approaches were proposed for the detection and prediction of drowsiness. The approaches can be categorized as estimating the fitness of duty, modeling the sleep-wake rhythms, measuring the vehicle based performance and online operator monitoring. Computer vision based online operator monitoring approach has become prominent due to its predictive ability of detecting drowsiness. Previous studies with this approach detect driver drowsiness primarily by making preassumptions about the relevant behavior, focusing on blink rate, eye closure, and yawning. Here we employ machine learning to datamine actual human behavior during drowsiness episodes. Automatic classifiers for 30 facial actions from the Facial Action Coding system were developed using machine learning on a separate database of spontaneous expressions. These facial actions include blinking and yawn motions, as well as a number of other facial movements. In addition, head motion was collected through automatic eye tracking and an accelerometer. These measures were passed to learning-based classifiers such as Adaboost and multinomial ridge regression. The system was able to predict sleep and crash episodes during a driving computer game with 96% accuracy within subjects and above 90% accuracy across subjects. This is the highest prediction rate reported to date for detecting real drowsiness. Moreover, the analysis revealed new information about human behavior during drowsy drivin

    Facial Expression Recognition

    Get PDF
    corecore