1,238 research outputs found

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    An end-to-end review of gaze estimation and its interactive applications on handheld mobile devices

    Get PDF
    In recent years we have witnessed an increasing number of interactive systems on handheld mobile devices which utilise gaze as a single or complementary interaction modality. This trend is driven by the enhanced computational power of these devices, higher resolution and capacity of their cameras, and improved gaze estimation accuracy obtained from advanced machine learning techniques, especially in deep learning. As the literature is fast progressing, there is a pressing need to review the state of the art, delineate the boundary, and identify the key research challenges and opportunities in gaze estimation and interaction. This paper aims to serve this purpose by presenting an end-to-end holistic view in this area, from gaze capturing sensors, to gaze estimation workflows, to deep learning techniques, and to gaze interactive applications.PostprintPeer reviewe

    Detecting Distracted Driving with Deep Learning

    Get PDF
    © Springer International Publishing AG 2017Driver distraction is the leading factor in most car crashes and near-crashes. This paper discusses the types, causes and impacts of distracted driving. A deep learning approach is then presented for the detection of such driving behaviors using images of the driver, where an enhancement has been made to a standard convolutional neural network (CNN). Experimental results on Kaggle challenge dataset have confirmed the capability of a convolutional neural network (CNN) in this complicated computer vision task and illustrated the contribution of the CNN enhancement to a better pattern recognition accuracy.Peer reviewe

    Biometric features modeling to measure students engagement.

    Get PDF
    The ability to measure students’ engagement in an educational setting may improve student retention and academic success, revealing which students are disinterested, or which segments of a lesson are causing difficulties. This ability will facilitate timely intervention in both the learning and the teaching process in a variety of classroom settings. In this dissertation, an automatic students engagement measure is proposed through investigating three main engagement components of the engagement: the behavioural engagement, the emotional engagement and the cognitive engagement. The main goal of the proposed technology is to provide the instructors with a tool that could help them estimating both the average class engagement level and the individuals engagement levels while they give the lecture in real-time. Such system could help the instructors to take actions to improve students\u27 engagement. Also, it can be used by the instructor to tailor the presentation of material in class, identify course material that engages and disengages with students, and identify students who are engaged or disengaged and at risk of failure. A biometric sensor network (BSN) is designed to capture data consist of individuals facial capture cameras, wall-mounted cameras and high performance computing machine to capture students head pose, eye gaze, body pose, body movements, and facial expressions. These low level features will be used to train a machine-learning model to estimate the behavioural and emotional engagements in either e-learning or in-class environment. A set of experiments is conducted to compare the proposed technology with the state-of-the-art frameworks in terms of performance. The proposed framework shows better accuracy in estimating both behavioral and emotional engagement. Also, it offers superior flexibility to work in any educational environment. Further, this approach allows quantitative comparison of teaching methods, such as lecture, flipped classrooms, classroom response systems, etc. such that an objective metric can be used for teaching evaluation with immediate closed-loop feedback to the instructor

    A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms

    Full text link
    In this paper a review is presented of the research on eye gaze estimation techniques and applications, that has progressed in diverse ways over the past two decades. Several generic eye gaze use-cases are identified: desktop, TV, head-mounted, automotive and handheld devices. Analysis of the literature leads to the identification of several platform specific factors that influence gaze tracking accuracy. A key outcome from this review is the realization of a need to develop standardized methodologies for performance evaluation of gaze tracking systems and achieve consistency in their specification and comparative evaluation. To address this need, the concept of a methodological framework for practical evaluation of different gaze tracking systems is proposed.Comment: 25 pages, 13 figures, Accepted for publication in IEEE Access in July 201

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201

    Pupil Position by an Improved Technique of YOLO Network for Eye Tracking Application

    Get PDF
    This Eye gaze following is the real-time collection of information about a person's eye movements and the direction of their look. Eye gaze trackers are devices that measure the locations of the pupils to detect and track changes in the direction of the user's gaze. There are numerous applications for analyzing eye movements, from psychological studies to human-computer interaction-based systems and interactive robotics controls. Real-time eye gaze monitoring requires an accurate and reliable iris center localization technique. Deep learning technology is used to construct a pupil tracking approach for wearable eye trackers in this study. This pupil tracking method uses deep-learning You Only Look Once (YOLO) model to accurately estimate and anticipate the pupil's central location under conditions of bright, natural light (visible to the naked eye). Testing pupil tracking performance with the upgraded YOLOv7 results in an accuracy rate of 98.50% and a precision rate close to 96.34% using PyTorch
    • …
    corecore