3,643 research outputs found

    Energy Saving Techniques for Phase Change Memory (PCM)

    Full text link
    In recent years, the energy consumption of computing systems has increased and a large fraction of this energy is consumed in main memory. Towards this, researchers have proposed use of non-volatile memory, such as phase change memory (PCM), which has low read latency and power; and nearly zero leakage power. However, the write latency and power of PCM are very high and this, along with limited write endurance of PCM present significant challenges in enabling wide-spread adoption of PCM. To address this, several architecture-level techniques have been proposed. In this report, we review several techniques to manage power consumption of PCM. We also classify these techniques based on their characteristics to provide insights into them. The aim of this work is encourage researchers to propose even better techniques for improving energy efficiency of PCM based main memory.Comment: Survey, phase change RAM (PCRAM

    Causal Consistency: Beyond Memory

    Get PDF
    In distributed systems where strong consistency is costly when not impossible, causal consistency provides a valuable abstraction to represent program executions as partial orders. In addition to the sequential program order of each computing entity, causal order also contains the semantic links between the events that affect the shared objects -- messages emission and reception in a communication channel , reads and writes on a shared register. Usual approaches based on semantic links are very difficult to adapt to other data types such as queues or counters because they require a specific analysis of causal dependencies for each data type. This paper presents a new approach to define causal consistency for any abstract data type based on sequential specifications. It explores, formalizes and studies the differences between three variations of causal consistency and highlights them in the light of PRAM, eventual consistency and sequential consistency: weak causal consistency, that captures the notion of causality preservation when focusing on convergence ; causal convergence that mixes weak causal consistency and convergence; and causal consistency, that coincides with causal memory when applied to shared memory.Comment: 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Mar 2016, Barcelone, Spai

    Parallel Batch-Dynamic Graph Connectivity

    Full text link
    In this paper, we study batch parallel algorithms for the dynamic connectivity problem, a fundamental problem that has received considerable attention in the sequential setting. The most well known sequential algorithm for dynamic connectivity is the elegant level-set algorithm of Holm, de Lichtenberg and Thorup (HDT), which achieves O(log2n)O(\log^2 n) amortized time per edge insertion or deletion, and O(logn/loglogn)O(\log n / \log\log n) time per query. We design a parallel batch-dynamic connectivity algorithm that is work-efficient with respect to the HDT algorithm for small batch sizes, and is asymptotically faster when the average batch size is sufficiently large. Given a sequence of batched updates, where Δ\Delta is the average batch size of all deletions, our algorithm achieves O(lognlog(1+n/Δ))O(\log n \log(1 + n / \Delta)) expected amortized work per edge insertion and deletion and O(log3n)O(\log^3 n) depth w.h.p. Our algorithm answers a batch of kk connectivity queries in O(klog(1+n/k))O(k \log(1 + n/k)) expected work and O(logn)O(\log n) depth w.h.p. To the best of our knowledge, our algorithm is the first parallel batch-dynamic algorithm for connectivity.Comment: This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 201
    corecore