1,574 research outputs found

    Real Analysis in Paraconsistent Logic

    Get PDF
    This paper begins an analysis of the real line using an inconsistency- tolerant (paraconsistent) logic. We show that basic field and compactness properties hold, by way of novel proofs that make no use of consistency- reliant inferences; some techniques from constructive analysis are used instead. While no inconsistencies are found in the algebraic operations on the real number field, prospects for other non-trivializing contradictions are left open

    Towards a Paraconsistent Quantum Set Theory

    Full text link
    In this paper, we will attempt to establish a connection between quantum set theory, as developed by Ozawa, Takeuti and Titani, and topos quantum theory, as developed by Isham, Butterfield and Doring, amongst others. Towards this end, we will study algebraic valued set-theoretic structures whose truth values correspond to the clopen subobjects of the spectral presheaf of an orthomodular lattice of projections onto a given Hilbert space. In particular, we will attempt to recreate, in these new structures, Takeuti's original isomorphism between the set of all Dedekind real numbers in a suitably constructed model of set theory and the set of all self adjoint operators on a chosen Hilbert space.Comment: In Proceedings QPL 2015, arXiv:1511.0118

    Potentiality and Contradiction in Quantum Mechanics

    Get PDF
    Following J.-Y.B\'eziau in his pioneer work on non-standard interpretations of the traditional square of opposition, we have applied the abstract structure of the square to study the relation of opposition between states in superposition in orthodox quantum mechanics in \cite{are14}. Our conclusion was that such states are \ita{contraries} (\ita{i.e.} both can be false, but both cannot be true), contradicting previous analyzes that have led to different results, such as those claiming that those states represent \ita{contradictory} properties (\ita{i. e.} they must have opposite truth values). In this chapter we bring the issue once again into the center of the stage, but now discussing the metaphysical presuppositions which underlie each kind of analysis and which lead to each kind of result, discussing in particular the idea that superpositions represent potential contradictions. We shall argue that the analysis according to which states in superposition are contrary rather than contradictory is still more plausible

    A Paraconsistent Higher Order Logic

    Full text link
    Classical logic predicts that everything (thus nothing useful at all) follows from inconsistency. A paraconsistent logic is a logic where an inconsistency does not lead to such an explosion, and since in practice consistency is difficult to achieve there are many potential applications of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order logic with countable infinite indeterminacy, where each basic formula can get its own indeterminate truth value (or as we prefer: truth code). The meaning of the logical operators is new and rather different from traditional many-valued logics as well as from logics based on bilattices. The adequacy of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens.Comment: Originally in the proceedings of PCL 2002, editors Hendrik Decker, Joergen Villadsen, Toshiharu Waragai (http://floc02.diku.dk/PCL/). Correcte

    Inconsistent boundaries

    Get PDF
    Research on this paper was supported by a grant from the Marsden Fund, Royal Society of New Zealand.Mereotopology is a theory of connected parts. The existence of boundaries, as parts of everyday objects, is basic to any such theory; but in classical mereotopology, there is a problem: if boundaries exist, then either distinct entities cannot be in contact, or else space is not topologically connected (Varzi in Noûs 31:26–58, 1997). In this paper we urge that this problem can be met with a paraconsistent mereotopology, and sketch the details of one such approach. The resulting theory focuses attention on the role of empty parts, in delivering a balanced and bounded metaphysics of naive space.PostprintPeer reviewe

    The Paraconsistent Approach to Quantum Superpositions Reloaded: Formalizing Contradictory Powers in the Potential Realm

    Get PDF
    In [7] the authors of this paper argued in favor of the possibility to consider a Paraconsistent Approach to Quantum Superpositions (PAQS). We claimed that, even though most interpretations of quantum mechanics (QM) attempt to escape contradictions, there are many hints -coming from present technical and experimental developments in QM- that indicate it could be worth while to engage in a research of this kind. Recently, Arenhart and Krause have raised several arguments against the PAQS [1, 2, 3]. In [11, 12] it was argued that their reasoning presupposes a metaphysical stance according to which the physical representation of reality must be exclusively considered in terms of the equation: Actuality = Reality. However, from a different metaphysical standpoint their problems disappear. It was also argued that, if we accept the idea that quantum superpositions exist in a (contradictory) potential realm, it makes perfect sense to develop QM in terms of a paraconsistent approach and claim that quantum superpositions are contradictory, contextual existents. Following these ideas, and taking as a standpoint an interpretation in terms of the physical notions of power and potentia put forward in [10, 12, 15], we present a paraconsistent formalization of quantum superpositions that attempts to capture the main features of QM.Comment: 26 pages, no figures. arXiv admin note: substantial text overlap with arXiv:1502.05081, arXiv:1404.5186, arXiv:1506.0737
    corecore