25,646 research outputs found

    Automatic Recognition and Digital Documentation of Cultural Heritage Hemispherical Domes using Images

    Get PDF
    Advancements in optical metrology has enabled documentation of dense 3D point clouds of cultural heritage sites. For large scale and continuous digital documentation, processing of dense 3D point clouds becomes computationally cumbersome, and often requires additional hardware for data management, increasing the time cost, and complexity of projects. To this end, this manuscript presents an original approach to generate fast and reliable semantic digital models of heritage hemispherical domes using only two images. New closed formulations were derived to establish the relationships between spheres and their projected ellipses onto images, which fostered the development of a new automatic framework for as-built generation of spheres. The effectiveness of the proposed method was evaluated under both laboratory and real-world datasets. The results revealed that the proposed method achieved as-built modeling accuracy of around 6mm, while improving the computation time by a factor of 7, when compared to established point cloud processing methods

    Photogrammetric restitution of a presumed ancient Asclepius temple in Titani, Peloponnesos, Greece

    Get PDF
    Close range photogrammetry is a useful tool for the documentation and registration of archaeological sites. In this case, photogrammetric restitution is applied to a presumed Esclepion Classical temple site in Titani, Peloponnesos, Greece. The archaeological remains that are recorded and processed in this stage are small fragments of walls, made out of irregular shaped stones. The fragmentary remains and the need to record both the facades of the stones as well as the upper surfaces, complicate the photogrammetric recording and processing workflow. The use of 3D documentation is important for the documentation, conservation and possible further excavation of the site. Stereographic pictures in combination with terrestrial topographic measurements are processed in the photogrammetric software VirtuoZoTM. The stereo photographs were taken by a non-metric high resolution digital single lens reflex camera with a minimum overlap of 65 percent. Targets placed on the remains of the walls were measured by total station to obtain ground control points for the orientation of each 3D stereo model in an absolute coordinate system (HGRS87). The photogrammetric processing of the stereo models results in very accurate digital elevation models and orthophotos of the walls. Further combining of these final products and merging these products in a CAD software leads to a 3D presentation of the archaeological excavation, which can be further used to evolve this archaeological site

    From survey to fem analysis for documentation of built heritage: The case study of villa revedin-bolasco

    Get PDF
    In the last decade advances in the fields of close-range photogrammetry, terrestrial laser scanning (TLS) and Computer Vision (CV) have enabled to collect different kind of information about a Cultural Heritage objects and to carry out highly accurate 3D models. Additionally, the integration between laser scanning technology and Finite Element Analysis (FEA) is gaining particular interest in recent years for structural analysis of built heritage, since the increasing computational capabilities allow to manipulate large datasets. In this note we illustrate the approach adopted for surveying, 3D modeling and structural analysis of Villa Revedin-Bolasco, a magnificent historical building located in the small walled town of Castelfranco Veneto, in northern Italy. In 2012 CIRGEO was charged by the University of Padova to carry out a survey of the Villa and Park, as preliminary step for subsequent restoration works. The inner geometry of the Villa was captured with two Leica Disto D3a BT hand-held laser meters, while the outer walls of the building were surveyed with a Leica C10 and a Faro Focus 3D 120 terrestrial laser scanners. Ancillary GNSS measurements were also collected for 3D laser model georeferencing. A solid model was then generated from the laser global point cloud in Rhinoceros software, and portion of it was used for simulation in a Finite Element Analysis (FEA). In the paper we discuss in detail all the steps and challenges addressed and solutions adopted concerning the survey, solid modeling and FEA from laser scanning data of the historical complex of Villa Revedin-Bolasco

    Virtual Exploration of Underwater Archaeological Sites : Visualization and Interaction in Mixed Reality Environments

    Get PDF
    This paper describes the ongoing developments in Photogrammetry and Mixed Reality for the Venus European project (Virtual ExploratioN of Underwater Sites, http://www.venus-project.eu). The main goal of the project is to provide archaeologists and the general public with virtual and augmented reality tools for exploring and studying deep underwater archaeological sites out of reach of divers. These sites have to be reconstructed in terms of environment (seabed) and content (artifacts) by performing bathymetric and photogrammetric surveys on the real site and matching points between geolocalized pictures. The base idea behind using Mixed Reality techniques is to offer archaeologists and general public new insights on the reconstructed archaeological sites allowing archaeologists to study directly from within the virtual site and allowing the general public to immersively explore a realistic reconstruction of the sites. Both activities are based on the same VR engine but drastically differ in the way they present information. General public activities emphasize the visually and auditory realistic aspect of the reconstruction while archaeologists activities emphasize functional aspects focused on the cargo study rather than realism which leads to the development of two parallel VR demonstrators. This paper will focus on several key points developed for the reconstruction process as well as both VR demonstrators (archaeological and general public) issues. The ?rst developed key point concerns the densi?cation of seabed points obtained through photogrammetry in order to obtain high quality terrain reproduction. The second point concerns the development of the Virtual and Augmented Reality (VR/AR) demonstrators for archaeologists designed to exploit the results of the photogrammetric reconstruction. And the third point concerns the development of the VR demonstrator for general public aimed at creating awareness of both the artifacts that were found and of the process with which they were discovered by recreating the dive process from ship to seabed

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    An approach for real world data modelling with the 3D terrestrial laser scanner for built environment

    Get PDF
    Capturing and modelling 3D information of the built environment is a big challenge. A number of techniques and technologies are now in use. These include EDM, GPS, and photogrammetric application, remote sensing and traditional building surveying applications. However, use of these technologies cannot be practical and efficient in regard to time, cost and accuracy. Furthermore, a multi disciplinary knowledge base, created from the studies and research about the regeneration aspects is fundamental: historical, architectural, archeologically, environmental, social, economic, etc. In order to have an adequate diagnosis of regeneration, it is necessary to describe buildings and surroundings by means of documentation and plans. However, at this point in time the foregoing is considerably far removed from the real situation, since more often than not it is extremely difficult to obtain full documentation and cartography, of an acceptable quality, since the material, constructive pathologies and systems are often insufficient or deficient (flat that simply reflects levels, isolated photographs,..). Sometimes the information in reality exists, but this fact is not known, or it is not easily accessible, leading to the unnecessary duplication of efforts and resources. In this paper, we discussed 3D laser scanning technology, which can acquire high density point data in an accurate, fast way. Besides, the scanner can digitize all the 3D information concerned with a real world object such as buildings, trees and terrain down to millimetre detail Therefore, it can provide benefits for refurbishment process in regeneration in the Built Environment and it can be the potential solution to overcome the challenges above. The paper introduce an approach for scanning buildings, processing the point cloud raw data, and a modelling approach for CAD extraction and building objects classification by a pattern matching approach in IFC (Industry Foundation Classes) format. The approach presented in this paper from an undertaken research can lead to parametric design and Building Information Modelling (BIM) for existing structures. Two case studies are introduced to demonstrate the use of laser scanner technology in the Built Environment. These case studies are the Jactin House Building in East Manchester and the Peel building in the campus of University Salford. Through these case studies, while use of laser scanners are explained, the integration of it with various technologies and systems are also explored for professionals in Built Environmen

    Reflectance Transformation Imaging (RTI) System for Ancient Documentary Artefacts

    No full text
    This tutorial summarises our uses of reflectance transformation imaging in archaeological contexts. It introduces the UK AHRC funded project reflectance Transformation Imaging for Anciant Documentary Artefacts and demonstrates imaging methodologies

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented
    • ā€¦
    corecore