858 research outputs found

    The stack resource protocol based on real time transactions

    Get PDF
    Current hard real time (HRT) kernels have their timely behaviour guaranteed at the cost of a rather restrictive use of the available resources. This makes current HRT scheduling techniques inadequate for use in a multimedia environment where one can profit by a better and more flexible use of the resources. It is shown that one can improve the flexibility and efficiency of real time kernels and a method is proposed for precise quality of service schedulability analysis of the stack resource protocol. This protocol is generalised by introducing real time transactions, which makes its use straightforward and efficient. Transactions can be refined to nested critical sections if the smallest estimation of blocking is desired. The method can be used for hard real time systems in general and for multimedia systems in particular

    ClockWork: a Real-Time Feasibility Analysis Tool

    Get PDF
    ClockWork shows that we can improve the flexibility and efficiency of real-time kernels. We do this by proposing methods for scheduling based on so-called Real-Time Transactions. ClockWork uses Real-Time Transactions which allow scheduling decisions to be taken by the system. A programmer does not need to be aware of synchronisation due to the sharing of resources and may have the illusion of a run-to-completion semantics even under pre-emptive scheduling protocols. The ClockWork tool presented here analyses the schedulability of a set of RT Transactions for a variety of protocols and visualises the result in a graphical form

    Flexible Scheduling in Multimedia Kernels: an Overview

    Get PDF
    Current Hard Real-Time (HRT) kernels have their timely behaviour guaranteed on the cost of a rather restrictive use of the available resources. This makes current HRT scheduling techniques inadequate for use in a multimedia environment where we can make a considerable profit by a better and more flexible use of the resources. We will show that we can improve the flexibility and efficiency of multimedia kernels. Therefore we introduce Real Time Transactions (RTT) with Deadline Inheritance policies for a small class of scheduling algorithms and we will evaluate these algorithms for use in a multimedia environmen

    Processing real-time transactions in a replicated database system

    Get PDF
    A database system supporting a real-time application has to provide real-time information to the executing transactions. Each real-time transaction is associated with a timing constraint, typically in the form of a deadline. It is difficult to satisfy all timing constraints due to the consistency requirements of the underlying database. In scheduling the transactions it is aimed to process as many transactions as possible within their deadlines. Replicated database systems possess desirable features for real-time applications, such as a high level of data availability, and potentially improved response time for queries. On the other hand, multiple copy updates lead to a considerable overhead due to the communication required among the data sites holding the copies. In this paper, we investigate the impact of storing multiple copies of data on satisfying the timing constraints of real-time transactions. A detailed performance model of a distributed database system is employed in evaluating the effects of various workload parameters and design alternatives on the system performance. The performance is expressed in terms of the fraction of satisfied transaction deadlines. A comparison of several real-time concurrency control protocols, which are based on different approaches in involving timing constraints of transactions in scheduling, is also provided in performance experiments. © 1994 Kluwer Academic Publishers

    A Comprehensive Concurrency Control Technique for Real-Time Database System

    Get PDF
    Real-time database must maintain the Temporal Consistency of the data which cannot be achieved with the conventional concurrency control techniques as they focus only on the consistency of the data. Different protocols exhibit good performance on different situations. But a single technique is inadequate to meet the demand of real-time database. To improve the concurrency control technique for real-time transactions, this paper will present a comprehensive technique that coordinates multi-version, OCC Sacrifice, Speculative Concurrency Control and 2PL-HP protocols. The presented technique uses best suited protocol based on the contention of transactions. Thus it can significantly improve the concurrency of transactions as well as increase the number of transactions

    A hierarchical scheduling model for component-based real-time systems

    Get PDF
    In this paper, we propose a methodology for developing component-based real-time systems based on the concept of hierarchical scheduling. Recently, much work has been devoted to the schedulability analysis of hierarchical scheduling systems, in which real-time tasks are grouped into components, and it is possible to specify a different scheduling policy for each component. Until now, only independent components have been considered. In this paper, we extend this model to tasks that interact through remote procedure calls. We introduce the concept of abstract computing platform on which each component is executed. Then, we transform the system specification into a set of real-time transactions and present a schedulability analysis algorithm. Our analysis is a generalization of the holistic analysis to the case of abstract computing platforms. We demonstrate the use of our methodology on a simple example

    Partial Computation in Real-Time Database Systems: A Research Plan

    Get PDF
    State-of-the-art database management systems are inappropriate for real-time applications due to their lack of speed and predictability of response. To combat these problems, the scheduler needs to be able to take advantage of the vast quantity of semantic and timing information that is typically available in such systems. Furthermore, to improve predictability of response, the system should be capable of providing a partial, but correct, response in a timely manner. We therefore propose to develop a semantics for real-time database systems that incorporates temporal knowledge of data-objects, their validity, and computation using their values. This temporal knowledge should include not just historical information but future knowledge of when to expect values to appear. This semantics will be used to develop a notion of approximate or partial computation, and to develop schedulers appropriate for real-time transactions

    Real-time in Plan 9 : a short overview

    Get PDF
    When shared resources are involved, scheduling in current hard real-time operating systems, too often has its timely behaviour guaranteed at the cost of a rather complicated administration. We will show that we can improve this considerably by using methods based on so-called Real-Time Transactions (RTTs). A RTT is a task that has guaranteed the use of all needed resources after it has started, without ever having to wait for the resource release; an RTT is only started if these resources are free. RTTs allow for a complete separation of a real-time application and its involved system support. Scheduling, (shared) resource synchronisation and admission control is executed automatically by the underlying system, while an application programmer only needs to specify timing constraints (deadline, period, runtime) and resource needs. We will discuss the implementation of RTTs within Plan 9 as used at Bell-labs, and we will illustrate the straightforward and elegant use of our transaction scheduling theory

    Speculative Concurrency Control for Real-Time Databases

    Full text link
    In this paper, we propose a new class of Concurrency Control Algorithms that is especially suited for real-time database applications. Our approach relies on the use of (potentially) redundant computations to ensure that serializable schedules are found and executed as early as possible, thus, increasing the chances of a timely commitment of transactions with strict timing constraints. Due to its nature, we term our concurrency control algorithms Speculative. The aforementioned description encompasses many algorithms that we call collectively Speculative Concurrency Control (SCC) algorithms. SCC algorithms combine the advantages of both Pessimistic and Optimistic Concurrency Control (PCC and OCC) algorithms, while avoiding their disadvantages. On the one hand, SCC resembles PCC in that conflicts are detected as early as possible, thus making alternative schedules available in a timely fashion in case they are needed. On the other hand, SCC resembles OCC in that it allows conflicting transactions to proceed concurrently, thus avoiding unnecessary delays that may jeopardize their timely commitment
    • 

    corecore