3,547 research outputs found

    Deep Learning Based Vehicle Make-Model Classification

    Full text link
    This paper studies the problems of vehicle make & model classification. Some of the main challenges are reaching high classification accuracy and reducing the annotation time of the images. To address these problems, we have created a fine-grained database using online vehicle marketplaces of Turkey. A pipeline is proposed to combine an SSD (Single Shot Multibox Detector) model with a CNN (Convolutional Neural Network) model to train on the database. In the pipeline, we first detect the vehicles by following an algorithm which reduces the time for annotation. Then, we feed them into the CNN model. It is reached approximately 4% better classification accuracy result than using a conventional CNN model. Next, we propose to use the detected vehicles as ground truth bounding box (GTBB) of the images and feed them into an SSD model in another pipeline. At this stage, it is reached reasonable classification accuracy result without using perfectly shaped GTBB. Lastly, an application is implemented in a use case by using our proposed pipelines. It detects the unauthorized vehicles by comparing their license plate numbers and make & models. It is assumed that license plates are readable.Comment: 10 pages, ICANN 2018: Artificial Neural Networks and Machine Learnin

    Vehicle-Rear: A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional Neural Networks

    Full text link
    This work addresses the problem of vehicle identification through non-overlapping cameras. As our main contribution, we introduce a novel dataset for vehicle identification, called Vehicle-Rear, that contains more than three hours of high-resolution videos, with accurate information about the make, model, color and year of nearly 3,000 vehicles, in addition to the position and identification of their license plates. To explore our dataset we design a two-stream CNN that simultaneously uses two of the most distinctive and persistent features available: the vehicle's appearance and its license plate. This is an attempt to tackle a major problem: false alarms caused by vehicles with similar designs or by very close license plate identifiers. In the first network stream, shape similarities are identified by a Siamese CNN that uses a pair of low-resolution vehicle patches recorded by two different cameras. In the second stream, we use a CNN for OCR to extract textual information, confidence scores, and string similarities from a pair of high-resolution license plate patches. Then, features from both streams are merged by a sequence of fully connected layers for decision. In our experiments, we compared the two-stream network against several well-known CNN architectures using single or multiple vehicle features. The architectures, trained models, and dataset are publicly available at https://github.com/icarofua/vehicle-rear

    A Robust Real-Time Automatic License Plate Recognition Based on the YOLO Detector

    Full text link
    Automatic License Plate Recognition (ALPR) has been a frequent topic of research due to many practical applications. However, many of the current solutions are still not robust in real-world situations, commonly depending on many constraints. This paper presents a robust and efficient ALPR system based on the state-of-the-art YOLO object detector. The Convolutional Neural Networks (CNNs) are trained and fine-tuned for each ALPR stage so that they are robust under different conditions (e.g., variations in camera, lighting, and background). Specially for character segmentation and recognition, we design a two-stage approach employing simple data augmentation tricks such as inverted License Plates (LPs) and flipped characters. The resulting ALPR approach achieved impressive results in two datasets. First, in the SSIG dataset, composed of 2,000 frames from 101 vehicle videos, our system achieved a recognition rate of 93.53% and 47 Frames Per Second (FPS), performing better than both Sighthound and OpenALPR commercial systems (89.80% and 93.03%, respectively) and considerably outperforming previous results (81.80%). Second, targeting a more realistic scenario, we introduce a larger public dataset, called UFPR-ALPR dataset, designed to ALPR. This dataset contains 150 videos and 4,500 frames captured when both camera and vehicles are moving and also contains different types of vehicles (cars, motorcycles, buses and trucks). In our proposed dataset, the trial versions of commercial systems achieved recognition rates below 70%. On the other hand, our system performed better, with recognition rate of 78.33% and 35 FPS.Comment: Accepted for presentation at the International Joint Conference on Neural Networks (IJCNN) 201

    Text detection and recognition in natural scene images

    Get PDF
    This thesis addresses the problem of end-to-end text detection and recognition in natural scene images based on deep neural networks. Scene text detection and recognition aim to find regions in an image that are considered as text by human beings, generate a bounding box for each word and output a corresponding sequence of characters. As a useful task in image analysis, scene text detection and recognition attract much attention in computer vision field. In this thesis, we tackle this problem by taking advantage of the success in deep learning techniques. Car license plates can be viewed as a spacial case of scene text, as they both consist of characters and appear in natural scenes. Nevertheless, they have their respective specificities. During the research progress, we start from car license plate detection and recognition. Then we extend the methods to general scene text, with additional ideas proposed. For both tasks, we develop two approaches respectively: a stepwise one and an integrated one. Stepwise methods tackle text detection and recognition step by step by respective models; while integrated methods handle both text detection and recognition simultaneously via one model. All approaches are based on the powerful deep Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), considering the tremendous breakthroughs they brought into the computer vision community. To begin with, a stepwise framework is proposed to tackle text detection and recognition, with its application to car license plates and general scene text respectively. A character CNN classifier is well trained to detect characters from an image in a sliding window manner. The detected characters are then grouped together as license plates or text lines according to some heuristic rules. A sequence labeling based method is proposed to recognize the whole license plate or text line without character level segmentation. On the basis of the sequence labeling based recognition method, to accelerate the processing speed, an integrated deep neural network is then proposed to address car license plate detection and recognition concurrently. It integrates both CNNs and RNNs in one network, and can be trained end-to-end. Both car license plate bounding boxes and their labels are generated in a single forward evaluation of the network. The whole process involves no heuristic rule, and avoids intermediate procedures like image cropping or feature recalculation, which not only prevents error accumulation, but also reduces computation burden. Lastly, the unified network is extended to simultaneous general text detection and recognition in natural scene. In contrast to the one for car license plates, some innovations are proposed to accommodate the special characteristics of general text. A varying-size RoI encoding method is proposed to handle the various aspect ratios of general text. An attention-based sequence-to-sequence learning structure is adopted for word recognition. It is expected that a character-level language model can be learnt in this manner. The whole framework can be trained end-to-end, requiring only images, the ground-truth bounding boxes and text labels. Through end-to-end training, the learned features can be more discriminative, which improves the overall performance. The convolutional features are calculated only once and shared by both detection and recognition, which saves the processing time. The proposed method has achieved state-of-the-art performance on several standard benchmark datasets.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 201

    Dataset: Traffic Images Captured from UAVs for Use in Training Machine Vision Algorithms for Traffic Management.

    Get PDF
    A dataset of Spanish road traffic images taken from unmanned aerial vehicles (UAV) is presented with the purpose of being used to train artificial vision algorithms, among which those based on convolutional neural networks stand out. This article explains the process of creating the complete dataset, which involves the acquisition of the data and images, the labeling of the vehicles, anonymization, data validation by training a simple neural network model, and the description of the structure and contents of the dataset (which amounts to 15,070 images). The images were captured by drones (but would be similar to those that could be obtained by fixed cameras) in the field of intelligent vehicle management. The presented dataset is available and accessible to improve the performance of road traffic vision and management systems since there is a lack of resources in this specific domain.post-print3928 K

    Deep Learning Based Automatic Vehicle License Plate Recognition System for Enhanced Vehicle Identification

    Get PDF
    An innovative Automatic Vehicle License Plate Recognition (AVLPR) system that effectively identifies vehicles using deep learning algorithms. Accurate and real-time license plate identification has grown in importance with the rise in demand for improved security and traffic management.The convolutional neural network (CNN) architecture used in the AVLPR system enables the model to automatically learn and extract discriminative characteristics from photos of license plates. To ensure the system's robustness and adaptability, the dataset utilized for training and validation includes a wide range of license plate designs, fonts, and lighting situations.We incorporate data augmentation approaches to accommodate differences in license plate orientation, scale, and perspective throughout the training process to improve recognition accuracy. Additionally, we use transfer learning to enhance the system's generalization abilities by refining the pre-trained model on a sizable dataset.A trustworthy and effective solution for vehicle identification duties is provided by the Deep Learning-Based Automatic Vehicle License Plate Recognition System. Deep learning approaches are used to guarantee precise and instantaneous recognition, making it suitable for many uses such as law enforcement, parking management, and intelligent transportation systems
    • …
    corecore