9,967 research outputs found

    Zero-Shot Relation Extraction via Reading Comprehension

    Full text link
    We show that relation extraction can be reduced to answering simple reading comprehension questions, by associating one or more natural-language questions with each relation slot. This reduction has several advantages: we can (1) learn relation-extraction models by extending recent neural reading-comprehension techniques, (2) build very large training sets for those models by combining relation-specific crowd-sourced questions with distant supervision, and even (3) do zero-shot learning by extracting new relation types that are only specified at test-time, for which we have no labeled training examples. Experiments on a Wikipedia slot-filling task demonstrate that the approach can generalize to new questions for known relation types with high accuracy, and that zero-shot generalization to unseen relation types is possible, at lower accuracy levels, setting the bar for future work on this task.Comment: CoNLL 201

    Question Dependent Recurrent Entity Network for Question Answering

    Full text link
    Question Answering is a task which requires building models capable of providing answers to questions expressed in human language. Full question answering involves some form of reasoning ability. We introduce a neural network architecture for this task, which is a form of Memory NetworkMemory\ Network, that recognizes entities and their relations to answers through a focus attention mechanism. Our model is named Question Dependent Recurrent Entity NetworkQuestion\ Dependent\ Recurrent\ Entity\ Network and extends Recurrent Entity NetworkRecurrent\ Entity\ Network by exploiting aspects of the question during the memorization process. We validate the model on both synthetic and real datasets: the bAbIbAbI question answering dataset and the $CNN\ \&\ Daily\ News reading\ comprehension$ dataset. In our experiments, the models achieved a State-of-The-Art in the former and competitive results in the latter.Comment: 14 page

    Reading Wikipedia to Answer Open-Domain Questions

    Full text link
    This paper proposes to tackle open- domain question answering using Wikipedia as the unique knowledge source: the answer to any factoid question is a text span in a Wikipedia article. This task of machine reading at scale combines the challenges of document retrieval (finding the relevant articles) with that of machine comprehension of text (identifying the answer spans from those articles). Our approach combines a search component based on bigram hashing and TF-IDF matching with a multi-layer recurrent neural network model trained to detect answers in Wikipedia paragraphs. Our experiments on multiple existing QA datasets indicate that (1) both modules are highly competitive with respect to existing counterparts and (2) multitask learning using distant supervision on their combination is an effective complete system on this challenging task.Comment: ACL2017, 10 page

    A Novel Gesture-based CAPTCHA Design for Smart Devices

    Get PDF
    CAPTCHAs have been widely used in Web applications to prevent service abuse. With the evolution of computing environment from desktop computing to ubiquitous computing, more and more users are accessing Web applications on smart devices where touch based interactions are dominant. However, the majority of CAPTCHAs are designed for use on computers and laptops which do not reflect the shift of interaction style very well. In this paper, we propose a novel CAPTCHA design to utilise the convenience of touch interface while retaining the needed security. This is achieved through using a hybrid challenge to take advantages of human’s cognitive abilities. A prototype is also developed and found to be more user friendly than conventional CAPTCHAs in the preliminary user acceptance test
    • …
    corecore