731 research outputs found

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    The design and development of multi-agent based RFID middleware system for data and devices management

    Get PDF
    Thesis (D. Tech. (Electrical Engineering)) - Central University of technology, Free State, 2012Radio frequency identification technology (RFID) has emerged as a key technology for automatic identification and promises to revolutionize business processes. While RFID technology adoption is improving rapidly, reliable and widespread deployment of this technology still faces many significant challenges. The key deployment challenges include how to use the simple, unreliable raw data generated by RFID deployments to make business decisions; and how to manage a large number of deployed RFID devices. In this thesis, a multi-agent based RFID middleware which addresses some of the RFID data and device management challenges was developed. The middleware developed abstracts the auto-identification applications from physical RFID device specific details and provides necessary services such as device management, data cleaning, event generation, query capabilities and event persistence. The use of software agent technology offers a more scalable and distributed system architecture for the proposed middleware. As part of a multi-agent system, application-independent domain ontology for RFID devices was developed. This ontology can be used or extended in any application interested with RFID domain ontology. In order to address the event processing tasks within the proposed middleware system, a temporal-based RFID data model which considers both applications’ temporal and spatial granules in the data model itself for efficient event processing was developed. The developed data model extends the conventional Entity-Relationship constructs by adding a time attribute to the model. By maintaining the history of events and state changes, the data model captures the fundamental RFID application logic within the data model. Hence, this new data model supports efficient generation of application level events, updating, querying and analysis of both recent and historical events. As part of the RFID middleware, an adaptive sliding-window based data cleaning scheme for reducing missed readings from RFID data streams (called WSTD) was also developed. The WSTD scheme models the unreliability of the RFID readings by viewing RFID streams as a statistical sample of tags in the physical world, and exploits techniques grounded in sampling theory to drive its cleaning processes. The WSTD scheme is capable of efficiently coping with both environmental variations and tag dynamics by automatically and continuously adapting its cleaning window size, based on observed readings

    A multi-agent based system RFID middleware for data and device management

    Get PDF
    Published ArticleRadio-frequency Identification (RFID) technology promises to revolutionize business processes. While RFID technology is improving rapidly, a reliable deployment of this technology is still a significant challenge impeding its widespread adoption. In this paper we provide a brief overview of some common fundamental characteristics of RFID data and devices, which pose significant challenges in the design of RFID middleware systems. In addition, the development of a multi-agent RFID middleware solution to address the RFID data and device management challenges is discussed

    An Approach for Removing Redundant Data from RFID Data Streams

    Get PDF
    Radio frequency identification (RFID) systems are emerging as the primary object identification mechanism, especially in supply chain management. However, RFID naturally generates a large amount of duplicate readings. Removing these duplicates from the RFID data stream is paramount as it does not contribute new information to the system and wastes system resources. Existing approaches to deal with this problem cannot fulfill the real time demands to process the massive RFID data stream. We propose a data filtering approach that efficiently detects and removes duplicate readings from RFID data streams. Experimental results show that the proposed approach offers a significant improvement as compared to the existing approaches

    The Challenges and Issues Facing the Deployment of RFID Technology

    Get PDF
    Griffith Sciences, School of Information and Communication TechnologyFull Tex

    WSN and RFID integration to support intelligent monitoring in smart buildings using hybrid intelligent decision support systems

    Get PDF
    The real time monitoring of environment context aware activities is becoming a standard in the service delivery in a wide range of domains (child and elderly care and supervision, logistics, circulation, and other). The safety of people, goods and premises depends on the prompt reaction to potential hazards identified at an early stage to engage appropriate control actions. This requires capturing real time data to process locally at the device level or communicate to backend systems for real time decision making. This research examines the wireless sensor network and radio frequency identification technology integration in smart homes to support advanced safety systems deployed upstream to safety and emergency response. These systems are based on the use of hybrid intelligent decision support systems configured in a multi-distributed architecture enabled by the wireless communication of detection and tracking data to support intelligent real-time monitoring in smart buildings. This paper introduces first the concept of wireless sensor network and radio frequency identification technology integration showing the various options for the task distribution between radio frequency identification and hybrid intelligent decision support systems. This integration is then illustrated in a multi-distributed system architecture to identify motion and control access in a smart building using a room capacity model for occupancy and evacuation, access rights and a navigation map automatically generated by the system. The solution shown in the case study is based on a virtual layout of the smart building which is implemented using the capabilities of the building information model and hybrid intelligent decision support system.The Saudi High Education Ministry and Brunel University (UK
    • …
    corecore