463 research outputs found

    Visualization and analysis of gene expression in bio-molecular networks

    Get PDF

    Knowledge extraction from unstructured data

    Get PDF
    Data availability is becoming more essential, considering the current growth of web-based data. The data available on the web are represented as unstructured, semi-structured, or structured data. In order to make the web-based data available for several Natural Language Processing or Data Mining tasks, the data needs to be presented as machine-readable data in a structured format. Thus, techniques for addressing the problem of capturing knowledge from unstructured data sources are needed. Knowledge extraction methods are used by the research communities to address this problem; methods that are able to capture knowledge in a natural language text and map the extracted knowledge to existing knowledge presented in knowledge graphs (KGs). These knowledge extraction methods include Named-entity recognition, Named-entity Disambiguation, Relation Recognition, and Relation Linking. This thesis addresses the problem of extracting knowledge over unstructured data and discovering patterns in the extracted knowledge. We devise a rule-based approach for entity and relation recognition and linking. The defined approach effectively maps entities and relations within a text to their resources in a target KG. Additionally, it overcomes the challenges of recognizing and linking entities and relations to a specific KG by employing devised catalogs of linguistic and domain-specific rules that state the criteria to recognize entities in a sentence of a particular language, and a deductive database that encodes knowledge in community-maintained KGs. Moreover, we define a Neuro-symbolic approach for the tasks of knowledge extraction in encyclopedic and domain-specific domains; it combines symbolic and sub-symbolic components to overcome the challenges of entity recognition and linking and the limitation of the availability of training data while maintaining the accuracy of recognizing and linking entities. Additionally, we present a context-aware framework for unveiling semantically related posts in a corpus; it is a knowledge-driven framework that retrieves associated posts effectively. We cast the problem of unveiling semantically related posts in a corpus into the Vertex Coloring Problem. We evaluate the performance of our techniques on several benchmarks related to various domains for knowledge extraction tasks. Furthermore, we apply these methods in real-world scenarios from national and international projects. The outcomes show that our techniques are able to effectively extract knowledge encoded in unstructured data and discover patterns over the extracted knowledge presented as machine-readable data. More importantly, the evaluation results provide evidence to the effectiveness of combining the reasoning capacity of the symbolic frameworks with the power of pattern recognition and classification of sub-symbolic models

    Exploiting Latent Features of Text and Graphs

    Get PDF
    As the size and scope of online data continues to grow, new machine learning techniques become necessary to best capitalize on the wealth of available information. However, the models that help convert data into knowledge require nontrivial processes to make sense of large collections of text and massive online graphs. In both scenarios, modern machine learning pipelines produce embeddings --- semantically rich vectors of latent features --- to convert human constructs for machine understanding. In this dissertation we focus on information available within biomedical science, including human-written abstracts of scientific papers, as well as machine-generated graphs of biomedical entity relationships. We present the Moliere system, and our method for identifying new discoveries through the use of natural language processing and graph mining algorithms. We propose heuristically-based ranking criteria to augment Moliere, and leverage this ranking to identify a new gene-treatment target for HIV-associated Neurodegenerative Disorders. We additionally focus on the latent features of graphs, and propose a new bipartite graph embedding technique. Using our graph embedding, we advance the state-of-the-art in hypergraph partitioning quality. Having newfound intuition of graph embeddings, we present Agatha, a deep-learning approach to hypothesis generation. This system learns a data-driven ranking criteria derived from the embeddings of our large proposed biomedical semantic graph. To produce human-readable results, we additionally propose CBAG, a technique for conditional biomedical abstract generation

    Recent Developments in Document Clustering

    Get PDF
    This report aims to give a brief overview of the current state of document clustering research and present recent developments in a well-organized manner. Clustering algorithms are considered with two hypothetical scenarios in mind: online query clustering with tight efficiency constraints, and offline clustering with an emphasis on accuracy. A comparative analysis of the algorithms is performed along with a table summarizing important properties, and open problems as well as directions for future research are discussed

    Opinion spam detection: using multi-iterative graph-based model

    Get PDF
    The demand to detect opinionated spam, using opinion mining applications to prevent their damaging effects on e-commerce reputations is on the rise in many business sectors globally. The existing spam detection techniques in use nowadays, only consider one or two types of spam entities such as review, reviewer, group of reviewers, and product. Besides, they use a limited number of features related to behaviour, content and the relation of entities which reduces the detection's accuracy. Accordingly, these techniques mostly exploit synthetic datasets to analyse their model and are not able to be applied in the context of the real-world environment. As such, a novel graph-based model called “Multi-iterative Graph-based opinion Spam Detection” (MGSD) in which all various types of entities are considered simultaneously within a unified structure is proposed. Using this approach, the model reveals both implicit (i.e., similar entity's) and explicit (i.e., different entities’) relationships. The MGSD model is able to evaluate the ‘spamicity’ effects of entities more efficiently given it applies a novel multi-iterative algorithm which considers different sets of factors to update the spamicity score of entities. To enhance the accuracy of the MGSD detection model, a higher number of existing weighted features along with the novel proposed features from different categories were selected using a combination of feature fusion techniques and machine learning (ML) algorithms. The MGSD model can also be generalised and applied in various opinionated documents due to employing domain independent features. The output of the MGSD model showed that our feature selection and feature fusion techniques showed a remarkable improvement in detecting spam. The findings of this study showed that MGSD could improve the accuracy of state-of-the-art ML and graph-based techniques by around 5.6% and 4.8%, respectively, also achieving an accuracy of 93% for the detection of spam detection in our synthetic crowdsourced dataset and 95.3% for Ott's crowdsourced dataset

    Strategies for Managing Linked Enterprise Data

    Get PDF
    Data, information and knowledge become key assets of our 21st century economy. As a result, data and knowledge management become key tasks with regard to sustainable development and business success. Often, knowledge is not explicitly represented residing in the minds of people or scattered among a variety of data sources. Knowledge is inherently associated with semantics that conveys its meaning to a human or machine agent. The Linked Data concept facilitates the semantic integration of heterogeneous data sources. However, we still lack an effective knowledge integration strategy applicable to enterprise scenarios, which balances between large amounts of data stored in legacy information systems and data lakes as well as tailored domain specific ontologies that formally describe real-world concepts. In this thesis we investigate strategies for managing linked enterprise data analyzing how actionable knowledge can be derived from enterprise data leveraging knowledge graphs. Actionable knowledge provides valuable insights, supports decision makers with clear interpretable arguments, and keeps its inference processes explainable. The benefits of employing actionable knowledge and its coherent management strategy span from a holistic semantic representation layer of enterprise data, i.e., representing numerous data sources as one, consistent, and integrated knowledge source, to unified interaction mechanisms with other systems that are able to effectively and efficiently leverage such an actionable knowledge. Several challenges have to be addressed on different conceptual levels pursuing this goal, i.e., means for representing knowledge, semantic data integration of raw data sources and subsequent knowledge extraction, communication interfaces, and implementation. In order to tackle those challenges we present the concept of Enterprise Knowledge Graphs (EKGs), describe their characteristics and advantages compared to existing approaches. We study each challenge with regard to using EKGs and demonstrate their efficiency. In particular, EKGs are able to reduce the semantic data integration effort when processing large-scale heterogeneous datasets. Then, having built a consistent logical integration layer with heterogeneity behind the scenes, EKGs unify query processing and enable effective communication interfaces for other enterprise systems. The achieved results allow us to conclude that strategies for managing linked enterprise data based on EKGs exhibit reasonable performance, comply with enterprise requirements, and ensure integrated data and knowledge management throughout its life cycle

    Explorative Graph Visualization

    Get PDF
    Netzwerkstrukturen (Graphen) sind heutzutage weit verbreitet. Ihre Untersuchung dient dazu, ein besseres VerstĂ€ndnis ihrer Struktur und der durch sie modellierten realen Aspekte zu gewinnen. Die Exploration solcher Netzwerke wird zumeist mit Visualisierungstechniken unterstĂŒtzt. Ziel dieser Arbeit ist es, einen Überblick ĂŒber die Probleme dieser Visualisierungen zu geben und konkrete LösungsansĂ€tze aufzuzeigen. Dabei werden neue Visualisierungstechniken eingefĂŒhrt, um den Nutzen der gefĂŒhrten Diskussion fĂŒr die explorative Graphvisualisierung am konkreten Beispiel zu belegen.Network structures (graphs) have become a natural part of everyday life and their analysis helps to gain an understanding of their inherent structure and the real-world aspects thereby expressed. The exploration of graphs is largely supported and driven by visual means. The aim of this thesis is to give a comprehensive view on the problems associated with these visual means and to detail concrete solution approaches for them. Concrete visualization techniques are introduced to underline the value of this comprehensive discussion for supporting explorative graph visualization

    A framework for dynamic heterogeneous information networks change discovery based on knowledge engineering and data mining methods

    Get PDF
    Information Networks are collections of data structures that are used to model interactions in social and living phenomena. They can be either homogeneous or heterogeneous and static or dynamic depending upon the type and nature of relations between the network entities. Static, homogeneous and heterogenous networks have been widely studied in data mining but recently, there has been renewed interest in dynamic heterogeneous information networks (DHIN) analysis because the rich temporal, structural and semantic information is hidden in this kind of network. The heterogeneity and dynamicity of the real-time networks offer plenty of prospects as well as a lot of challenges for data mining. There has been substantial research undertaken on the exploration of entities and their link identification in heterogeneous networks. However, the work on the formal construction and change mining of heterogeneous information networks is still infant due to its complex structure and rich semantics. Researchers have used clusters-based methods and frequent pattern-mining techniques in the past for change discovery in dynamic heterogeneous networks. These methods only work on small datasets, only provide the structural change discovery and fail to consider the quick and parallel process on big data. The problem with these methods is also that cluster-based approaches provide the structural changes while the pattern-mining provide semantic characteristics of changes in a dynamic network. Another interesting but challenging problem that has not been considered by past studies is to extract knowledge from these semantically richer networks based on the user-specific constraint.This study aims to develop a new change mining system ChaMining to investigate dynamic heterogeneous network data, using knowledge engineering with semantic web technologies and data mining to overcome the problems of previous techniques, this system and approach are important in academia as well as real-life applications to support decision-making based on temporal network data patterns. This research has designed a novel framework “ChaMining” (i) to find relational patterns in dynamic networks locally and globally by employing domain ontologies (ii) extract knowledge from these semantically richer networks based on the user-specific (meta-paths) constraints (iii) Cluster the relational data patterns based on structural properties of nodes in the dynamic network (iv) Develop a hybrid approach using knowledge engineering, temporal rule mining and clustering to detect changes in the dynamic heterogeneous networks.The evidence is presented in this research shows that the proposed framework and methods work very efficiently on the benchmark big dynamic heterogeneous datasets. The empirical results can contribute to a better understanding of the rich semantics of DHIN and how to mine them using the proposed hybrid approach. The proposed framework has been evaluated with the previous six dynamic change detection algorithms or frameworks and it performs very well to detect microscopic as well as macroscopic human-understandable changes. The number of change patterns extracted in this approach was higher than the previous approaches which help to reduce the information loss

    NLP Driven Models for Automatically Generating Survey Articles for Scientific Topics.

    Full text link
    This thesis presents new methods that use natural language processing (NLP) driven models for summarizing research in scientific fields. Given a topic query in the form of a text string, we present methods for finding research articles relevant to the topic as well as summarization algorithms that use lexical and discourse information present in the text of these articles to generate coherent and readable extractive summaries of past research on the topic. In addition to summarizing prior research, good survey articles should also forecast future trends. With this motivation, we present work on forecasting future impact of scientific publications using NLP driven features.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113407/1/rahuljha_1.pd
    • 

    corecore