13,011 research outputs found

    Model Building of Metal Oxide Surfaces and Vibronic Coupling Density as a Reactivity Index: Regioselectivity of CO2_2 Adsorption on Ag-loaded Ga2_2O3_3

    Get PDF
    The step-by-step hydrogen-terminated (SSHT) model is proposed as a model for the surfaces of metal oxides. Using this model, it is found that the vibronic coupling density (VCD) can be employed as a reactivity index for surface reactions. As an example, the regioselectivity of CO2_2 adsorption on the Ag-loaded Ga2_2O3_3 photocatalyst surface is investigated based on VCD analysis. The cluster model constructed by the SSHT approach reasonably reflects the electronic structures of the Ga2_2O3_3 surface. The geometry of CO2_2 adsorbed on the Ag-loaded Ga2_2O3_3 cluster has a bent structure, which is favorable for its photocatalytic reduction to CO.Comment: 18 pages, 11 figure

    The nature and role of the gold-krypton interactions in small neutral gold clusters

    Get PDF
    © 2015 American Chemical Society. We investigate the nature and role of krypton embedding in small neutral gold clusters. For some of these clusters, we observe a particular site-dependent character of the Kr binding that does not completely follow the criterion of binding at low-coordinated sites, widely accepted for interaction of a noble gas with closed-shell metal systems such as metal surfaces. We aim at understanding the effect of low dimensionality and open-shell electronic structure of the odd-numbered clusters on the noble gas-metal cluster interaction. First, we investigate the role of attractive and repulsive forces, and the frontier molecular orbitals. Second, we investigate the Au-Kr interaction in terms of reactivity and bonding character. We use a reactivity index derived from Fukui formalism, and criteria provided by the electron localization function (ELF), in order to classify the type of bonding. We carry out this study on the minimum energy structures of neutral gold clusters, as obtained using pseudo potential plane-wave density functional theory (DFT). A model is proposed that includes the effect of attractive electrostatic, van der Waals and repulsive forces, together with effects originating from orbital overlap. This satisfactorily explains minimum configurations of the noble gas-gold cluster systems, the site preference of the noble gas atoms, and changes in electronic properties

    A theoretical quantum study of the electronic properties of mentoxy dichloro phosphorous (C10H19OPCl2)

    Get PDF
    Indexación: Scopus.A theoretical quantum study of the organophosphorus compound with formula C10H19OPCl2 (MEPCL2) was carried out. The results of the calculations show excellent agreement between experimental and computed frequencies evaluated at the B3LYP/6-311++G(d,p) level of theory. A study of the electronic properties, such as excitation energies and wavelengths were performed employing the time-dependent DFT (TD-DFT) method. Global a chemical reactivity of MEPCL2 was analyzed through global reactivity descriptors, while its local reactivity was analyzed by mean maps of the electrostatic potential. Also, the orbital energies values suggest that a charge transfer is occurring within the molecule. © 2018 American Physical Society.https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0717-97072018000103887&lng=en&nrm=iso&tlng=e

    Low-energy spectrum of iron-sulfur clusters directly from many-particle quantum mechanics

    Get PDF
    FeS clusters are a universal biological motif. They carry out electron transfer, redox chemistry, and even oxygen sensing, in diverse processes including nitrogen fixation, respiration, and photosynthesis. The low-lying electronic states are key to their remarkable reactivity, but cannot be directly observed. Here we present the first ever quantum calculation of the electronic levels of [2Fe-2S] and [4Fe-4S] clusters free from any model assumptions. Our results highlight limitations of long-standing models of their electronic structure. In particular, we demonstrate that the widely used Heisenberg-Double-Exchange model underestimates the number of states by 1-2 orders of magnitude, which can conclusively be traced to the absence of Fe d→\rightarrowd excitations, thought to be important in these clusters. Further, the electronic energy levels of even the same spin are dense on the scale of vibrational fluctuations, and this provides a natural explanation for the ubiquity of these clusters in nature for catalyzing reactions.Comment: Nature Chemistry, 201

    Why 1,2‑quinone derivatives are more stable than their 2,3‑analogues?

    Get PDF
    In this work, we have studied the relative stability of 1,2- and 2,3-quinones. While 1,2-quinones have a closed-shell singlet ground state, the ground state for the studied 2,3-isomers is open-shell singlet, except for 2,3-naphthaquinone that has a closed-shell singlet ground state. In all cases, 1,2-quinones are more stable than their 2,3-counterparts. We analyzed the reasons for the higher stability of the 1,2-isomers through energy decomposition analysis in the framework of Kohn–Sham molecular orbital theory. The results showed that we have to trace the origin of 1,2-quinones’ enhanced stability to the more efficient bonding in the π-electron system due to more favorable overlap between the SOMOπ of the ·C4n−2H2n–CH·· and ··CH–CO–CO· fragments in the 1,2-arrangement. Furthermore, whereas 1,2-quinones present a constant trend with their elongation for all analyzed properties (geometric, energetic, and electronic), 2,3-quinone derivatives present a substantial breaking in monotonicity.European Union in the framework of European Social Fund through the Warsaw University of Technology Development Programme. O.A. S., H. S. and T.M. K

    On the reduction of 4-oxo-4h-benzopyran-3-carbaldehydes : global and local electrophilicity patterns

    Get PDF
    The theoretical global and local electrophilicity patterns of substituted and chelated 4-oxo-4H-benzopyran-3-carbaldehydes (formylchromones) have been evaluated using the electrophilicity index proposed by Parr et al [J. Am. Chem. Soc. 1999, 121, 1922]. The complexation of formylchromones with aluminum predicts a strong electrophilic character of these compounds against nucleophiles. Local response at the active sites may also be assessed in terms of a global contribution described by the global electrophilicity, and a local contribution described by the variations in electrophilic Fukui function at those sites. The highest local electrophilicity is found at the formyl group of the chelated formylchromones, in spite of that, the highest positive charge is located on the pyrone carbonyl group. This result is consistent with the experimental observed reactivity displayed by 4-oxo-4H-benzopyran-3-carbaldehydes in the presence of 2-propanol and alumina
    • 

    corecore