5,690 research outputs found

    Learning Feedback Terms for Reactive Planning and Control

    Full text link
    With the advancement of robotics, machine learning, and machine perception, increasingly more robots will enter human environments to assist with daily tasks. However, dynamically-changing human environments requires reactive motion plans. Reactivity can be accomplished through replanning, e.g. model-predictive control, or through a reactive feedback policy that modifies on-going behavior in response to sensory events. In this paper, we investigate how to use machine learning to add reactivity to a previously learned nominal skilled behavior. We approach this by learning a reactive modification term for movement plans represented by nonlinear differential equations. In particular, we use dynamic movement primitives (DMPs) to represent a skill and a neural network to learn a reactive policy from human demonstrations. We use the well explored domain of obstacle avoidance for robot manipulation as a test bed. Our approach demonstrates how a neural network can be combined with physical insights to ensure robust behavior across different obstacle settings and movement durations. Evaluations on an anthropomorphic robotic system demonstrate the effectiveness of our work.Comment: 8 pages, accepted to be published at ICRA 2017 conferenc

    Wavefront Propagation and Fuzzy Based Autonomous Navigation

    Full text link
    Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments

    A dynamical system approach to realtime obstacle avoidance

    Get PDF
    This paper presents a novel approach to real-time obstacle avoidance based on Dynamical Systems (DS) that ensures impenetrability of multiple convex shaped objects. The proposed method can be applied to perform obstacle avoidance in Cartesian and Joint spaces and using both autonomous and non-autonomous DS-based controllers. Obstacle avoidance proceeds by modulating the original dynamics of the controller. The modulation is parameterizable and allows to determine a safety margin and to increase the robot's reactiveness in the face of uncertainty in the localization of the obstacle. The method is validated in simulation on different types of DS including locally and globally asymptotically stable DS, autonomous and non-autonomous DS, limit cycles, and unstable DS. Further, we verify it in several robot experiments on the 7 degrees of freedom Barrett WAM ar
    • …
    corecore